光学学报, 2019, 39 (7): 0728011, 网络出版: 2019-07-16   

可调谐交叉领结形石墨烯阵列结构等离子体折射率传感器 下载: 1111次

Plasma Refractive Index Sensor with Tunable Cross Tie-Shaped Graphene Array Structure
作者单位
1 桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
2 桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004
引用该论文

肖功利, 杨秀华, 杨宏艳, 窦婉滢, 徐俊林, 韦清臣, 李海鸥, 张法碧, 李琦, 陈永和, 傅涛, 孙堂友. 可调谐交叉领结形石墨烯阵列结构等离子体折射率传感器[J]. 光学学报, 2019, 39(7): 0728011.

Gongli Xiao, Xiuhua Yang, Hongyan Yang, Wanying Dou, Junlin Xu, Qingchen Wei, Haiou Li, Fabi Zhang, Qi Li, Yonghe Chen, Tao Fu, Tangyou Sun. Plasma Refractive Index Sensor with Tunable Cross Tie-Shaped Graphene Array Structure[J]. Acta Optica Sinica, 2019, 39(7): 0728011.

参考文献

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[2] 李艳, 张芳, 陈辉, 等. 石墨烯微纳结构加工技术的研究进展[J]. 微纳电子技术, 2013, 50(4): 255-263.

    Li Y, Zhang F, Chen H, et al. Research progress of the process technology for graphene micro/nano structures[J]. Micronanoelectronic Technology, 2013, 50(4): 255-263.

[3] Xu J J, Wang K, Zu S Z, et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage[J]. ACS Nano, 2010, 4(9): 5019-5026.

[4] Gaspari F, Shkrebtii A I, McNelles P, et al. 1362: mrss11-1362-qq09-18[J]. its non-destructive optical characterization. MRS Proceedings, 2011.

[5] 赵燕芳, 岳太星, 金玲仁, 等. 基于石墨烯构建的电化学传感器在环境监测中的应用[J]. 中国环境管理干部学院学报, 2012, 22(4): 56-59, 70.

    Zhao Y F, Yue T X, Jin L R, et al. The application of graphene-based electrochemical sensor in environmental monitoring[J]. Journal of Environmental Management College of China, 2012, 22(4): 56-59, 70.

[6] Yang K, Gong H, Shi X Z, et al. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration[J]. Biomaterials, 2013, 34(11): 2787-2795.

[7] 杜威. 石墨烯光电子有源器件的研究[D]. 杭州: 浙江大学, 2015.

    DuW. Research on graphene-based active optoelectronics devices[D]. Hangzhou: Zhejiang University, 2015.

[8] Ye C Y, Zhu Z H, Xu W, et al. Electrically tunable absorber based on nonstructured graphene[J]. Journal of Optics, 2015, 17(12): 125009.

[9] Gan C H, Chu H S, Li E P. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies[J]. Physical Review B, 2012, 85(12): 125431.

[10] Wang F, Zhang Y, Tian C, et al. Gate-variable optical transitions in graphene[J]. Science, 2008, 320(5873): 206-209.

[11] Lu W B, Zhu W, Xu H J, et al. Flexible transformation plasmonics using graphene[J]. Optics Express, 2013, 21(9): 10475-10482.

[12] Woessner A, Lundeberg M B, Gao Y D, et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures[J]. Nature Materials, 2015, 14(4): 421-425.

[13] Chen J J, Zeng Y, Xu X B, et al. Plasmonic absorption enhancement in elliptical graphene arrays[J]. Nanomaterials, 2018, 8(3): 175.

[14] Hu X, Wang J. High figure of merit graphene modulator based on long-range hybrid plasmonic slot waveguide[J]. IEEE Journal of Quantum Electronics, 2017, 53(3): 7200308.

[15] Feng Y C, Liu Y W, Wang X H, et al. Tunable multichannel plasmonic filter based on a single graphene sheet on a Fibonacci quasiperiodic structure[J]. Plasmonics, 2018, 13(2): 653-659.

[16] Tao L Q, Zhang K N, Tian H, et al. Graphene-paper pressure sensor for detecting human motions[J]. ACS Nano, 2017, 11(9): 8790-8795.

[17] Zhou P, Zheng G G. High-efficient light absorption of monolayer graphene via cylindrical dielectric arrays and the sensing application[J]. Optical Materials, 2018, 78: 471-476.

[18] Wu J, Zhou C H, Yu J J, et al. Design of infrared surface plasmon resonance sensors based on graphene ribbon arrays[J]. Optics & Laser Technology, 2014, 59: 99-103.

[19] Bai Y K, Wang B, Ma X R. Versatile infrared refractive-index sensor based on surface plasmon resonance in graphene sheet[J]. Optical Engineering, 2018, 57(3): 037107.

[20] Zhao Y, Hu X, Chen G X, et al. Infrared biosensors based on graphene plasmonics: modeling[J]. Physical Chemistry Chemical Physics, 2013, 15(40): 17118-17125.

[21] Vasi B, Isi G. Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies[J]. Journal of Applied Physics, 2013, 113(1): 013110.

[22] Wei W, Nong J P, Zhang G W, et al. An infrared biosensor based on graphene plasmonic for integrated nanofluidic analysis[J]. Proceedings of SPIE, 2014, 9278: 92780F.

[23] Wei W, Nong J P, Tang L L, et al. Reflection-type infrared biosensor based on surface plasmonics in graphene ribbon arrays[J]. Chinese Optics Letters, 2015, 13(8): 082801.

[24] Rodrigo D, Limaj O, Janner D, et al. Mid-infrared plasmonic biosensing with graphene[J]. Science, 2015, 349(6244): 165-168.

[25] HanX, WangT. High sensitive refractive index sensor in a graphene-based nanoribbon waveguide system based on the finite-difference time-domain method[C]//2016 IEEE International Conference on Computational Electromagnetics (ICCEM), February 23-25, 2016, Guangzhou, China. New York: IEEE, 2016: 265- 267.

[26] Zundel L, Manjavacas A. Spatially resolved optical sensing using graphene nanodisk arrays[J]. ACS Photonics, 2017, 4(7): 1831-1838.

[27] Cen C L, Lin H, Huang J, et al. A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays[J]. Sensors, 2018, 18(12): 4489.

[28] 陈颖, 田亚宁, 何磊, 等. 亚波长金属光栅/电介质/金属混合波导传感结构的研究[J]. 中国激光, 2018, 45(1): 0110001.

    Chen Y, Tian Y N, He L, et al. Research on subwavelength metal grating/dielectric/metal hybrid waveguide sensing structure[J]. Chinese Journal of Lasers, 2018, 45(1): 0110001.

[29] 张东阳, 赵磊, 王向贤, 等. 一种基于介质光栅金属薄膜复合结构的折射率传感器[J]. 光学学报, 2017, 37(11): 1124001.

    Zhang D Y, Zhao L, Wang X X, et al. A refractive index sensor based on composite structure of dielectric grating with metal films[J]. Acta Optica Sinica, 2017, 37(11): 1124001.

[30] Hanson G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.

[31] 李志全, 冯丹丹, 李欣, 等. 基于石墨烯表面等离激元的双支节结构光电调制器[J]. 光学学报, 2018, 38(1): 0124001.

    Li Z Q, Feng D D, Li X, et al. Graphene surface plasmon polaritons based photoelectric modulator with double branched structure[J]. Acta Optica Sinica, 2018, 38(1): 0124001.

[32] He S L, Zhang X Z, He Y R. Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI[J]. Optics Express, 2013, 21(25): 30664-30673.

[33] Gao W L, Shu J, Qiu C Y, et al. Excitation of plasmonic waves in graphene by guided-mode resonances[J]. ACS Nano, 2012, 6(9): 7806-7813.

[34] 姜小强, 刘智波, 田建国. 石墨烯光学性质及其应用研究进展[J]. 物理学进展, 2017, 37(1): 22-36.

    Jiang X Q, Liu Z B, Tian J G. The optical properties of graphene and its application[J]. Progress in Physics, 2017, 37(1): 22-36.

[35] Nikitin A Y, Guinea F. Garcia-Vidal F J, et al. Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons[J]. Physical Review B, 2012, 85(8): 081405.

[36] Han X, Wang T. Tunable plasmon induced transparency in a graphene-based waveguide structure and it's applications in sensing[J]. Proceedings of SPIE, 2017, 10343: 103432H.

肖功利, 杨秀华, 杨宏艳, 窦婉滢, 徐俊林, 韦清臣, 李海鸥, 张法碧, 李琦, 陈永和, 傅涛, 孙堂友. 可调谐交叉领结形石墨烯阵列结构等离子体折射率传感器[J]. 光学学报, 2019, 39(7): 0728011. Gongli Xiao, Xiuhua Yang, Hongyan Yang, Wanying Dou, Junlin Xu, Qingchen Wei, Haiou Li, Fabi Zhang, Qi Li, Yonghe Chen, Tao Fu, Tangyou Sun. Plasma Refractive Index Sensor with Tunable Cross Tie-Shaped Graphene Array Structure[J]. Acta Optica Sinica, 2019, 39(7): 0728011.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!