光谱学与光谱分析, 2016, 36 (11): 3510, 网络出版: 2016-12-30   

红外光谱结合化学计量学方法快速鉴别牛肝菌种类及总汞含量分析

Infrared Spectroscopy Combined with Chemometrics for Rapid Discrimination on Species of Bolete Mushrooms and an Analysis of Total Mercury
作者单位
1 云南农业大学农学与生物技术学院, 云南 昆明 650201
2 云南省农业科学院药用植物研究所, 云南 昆明 650200
3 玉溪师范学院资源环境学院, 云南 玉溪 653100
摘要
傅里叶变换红外光谱结合化学计量学建立快速鉴别牛肝菌种类及测定牛肝菌中总Hg含量的方法。 采集15种共48份云南常见牛肝菌的红外光谱信息并用冷原子吸收光谱-直接测汞仪测定牛肝菌的总Hg含量, 根据FAO/WHO规定的每周Hg允许摄入量(provisional tolerable weekly intake, PTWI)评价牛肝菌的食用安全性; 采用Norris平滑、 多元散射校正、 二阶导数、 正交信号校正-微波压缩等方法对牛肝菌的红外光谱进行优化处理, 优化处理后的数据进行主成分分析、 偏最小二乘判别分析建立快速鉴别牛肝菌种类及牛肝菌总Hg含量的预测模型。 结果显示: (1)主成分分析的前三个主成分累积贡献率为77.1%, 不同种类牛肝菌在主成分得分图中能够明显区分开, 表明不同种类牛肝菌的化学组分或含量具有差异; (2)不同产地、 种类牛肝菌总Hg含量差异明显, 其总Hg含量在0.17~15.2 mg·kg-1 dw之间; 若成年人(60 kg)每周食用300 g新鲜牛肝菌则少数牛肝菌摄入的Hg超过PTWI的限量标准, 食用有一定风险; (3)牛肝菌红外光谱数据与总Hg含量拟合, 进行偏最小二乘判别分析, 能快速区分总Hg含量低(≤1.95 mg·kg-1 dw)、 中(2.05~3.9 mg·kg-1 dw)、 高(≥4.1 mg·kg-1 dw)的牛肝菌样品, 并且Hg含量差异越大, 越易于区分; 进一步建立牛肝菌总Hg含量预测模型, 训练集的R2为0.911 4, RMSEE为1.09, 验证集的R2和RMSEP分别为0.949 7和0.669 5, 牛肝菌总Hg含量预测值与测定值比较接近, 模型预测效果良好。 红外光谱结合化学计量学方法能快速鉴别牛肝菌种类, 区分不同总Hg含量的牛肝菌样品并对Hg含量进行准确预测, 为野生牛肝菌的质量控制和食用安全评估提供快速、 简便的方法。
Abstract
Fourier transform infrared spectroscopy combined with chemometrics was used to establish a method for rapid identification of different species of bolete mushrooms and determination of total mercury (Hg). In this study, 15 species of bolete mushrooms were used and the information of infrared spectra of 48 samples was collected. Meanwhile, the total Hg was determined with cold-vapour atomic absorption spectroscopy and direct mercury analyzer. The food safety of bolete mushrooms was evaluated according to provisional tolerable weekly intake (PTWI) for Hg recommended by the United Nations food and agriculture organization and the World Health Organization (FAO/WHO). The original infrared spectra were optimized with Norris smooth, multiplicative signal correction (MSC), second derivative, orthogonal signal correction and wavelet compression (OSCW). The spectra data were analyzed with principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) after the optimal pretreatment. Then the discrimination model for different species of bolete mushrooms and prediction model of Hg content were established, respectively. The results showed that: (1) The cumulative contribution of first three principal components of PCA was 77.1%. Different species of boletes can be obviously distinguished in principal component score plot. It indicated that the chemical composition or contents were different in these species of boletes. (2) There were significant differences in total Hg contents in different samples and the total Hg content in the boletes were 0.17~15.2 mg·kg-1 dry weight (dw). If adults (60 kg) ate 300 g fresh bolete mushrooms a week, Hg intakes in a few samples were higher than the PTWI standard with potential risks. (3) The infrared spectra data in combination with the total Hg content was performed by partial least squares discriminant analysis. The mushroom samples with low (≤1.95 mg·kg-1 dw), medium (2.05~3.9 mg·kg-1 dw) and high (≥4.1 mg·kg-1 dw) total Hg content could be discriminated. Moreover, the more different the Hg content was, the more easily to distinguish. In addition, the prediction model of total Hg content of boletes was established. The R2 and RMSEE of the training set were 0.911 4 and 1.09, respectively while R2 and RMSEP of validation set were 0.949 7 and 0.669 5, respectively. The predictive values of total Hg content in boletes were approximate to the measured values which showed that the model has good predictive effect. Infrared spectroscopy combined with chemometrics can be used for rapid identification of bolete species and discrimination of bolete samples with different contents of total Hg. Furthermore, the total Hg content could also be predicted, accurately. This study may provide a rapid and simple method for quality control and edible safety assessment of wild-grown bolete mushrooms.
参考文献

[1] LI Yu(李 玉). Edible and Medicinal Mushrooms(食药用菌), 2011, 19(1): 1.

[2] LI Tai-hui, SONG Bin(李泰辉, 宋 斌). Journal of Edible Fungi(食用菌学报), 2002, 9(2): 22.

[3] DAI Yu-cheng, ZHOU Li-wei, YANG Zhu-liang, et al(戴玉成, 周丽伟, 杨祝良, 等). Mycosystema(菌物学报), 2010, 29(1): 1.

[4] Wang X M, Zhang J, Wu L H, et al. Food Chemistry, 2014, 151: 279.

[5] ZHANG Qun, YANG Xiao-fang(张 群, 杨晓方). Technology and Market(技术与市场), 2013, 5: 316.

[6] Heleno S A, Ferreira R C, Antonio A L, et al. Food Bioscience, 2015, 11: 48.

[7] Jarzyńska G, Falandysz J. African Journal of Biotechnology, 2014, 11(20): 4588.

[8] Ulziijargal E, Mau J L. International Journal of Medicinal Mushrooms, 2011, 13(4): 343.

[9] Thatoi H, Singdevsachan S K. African Journal of Biotechnology, 2015, 13(4): 523.

[10] Cheung P C K. Nutrition Bulletin, 2010, 35(4): 292.

[11] LI Shu-hong, ZHAO Yong-chang, YU Fu-qiang, et al(李树红, 赵永昌, 于富强, 等). Edible Fungi of China(中国食用菌), 2011, 30(5): 34.

[12] Liu B, Huang Q, Cai H, et al. Food Chemistry, 2015, 188: 294.

[13] Kalac P. Food Chemistry, 2010, 122(1): 2.

[14] Falandysz J, Kowalewska I, Nnorom I C, et al. Journal of Environmental Science and Health, Part A, 2012, 47(11): 1695.

[15] Guallar E, Sanz-Gallardo M I, Veer P, et al. New England Journal of Medicine, 2002, 347(22): 1747.

[16] Trasande L, Landrigan P J, Schechter C. Environmental Health Perspectives, 2005, 113(5): 590.

[17] Adams D H, Sonne C, Basu N, et al. Science of the Total Environment, 2010, 408(23): 5808.

[18] Jarzyńska G, Falandysz J. Journal of Environmental Science and Health Part A, 2011, 46(6): 569.

[19] Bernalte E, Salmanighabeshi S, Rueda-Holgado F, et al. International Journal of Environmental Science and Technology, 2015, 12(3): 817.

[20] YE Hui-xuan, TAN Zhou, LIU Xiang-qian, et al(叶惠煊, 谭 舟, 刘向前, 等). Food Science(食品科学), 2014, 35(4): 151.

[21] YANG Jia(杨 佳). Authenticity, Adulteration and Quality Analysis of Sesame oils by Fourier Transform Infrared Spectroscopy(傅里叶变换红外光谱技术在芝麻油真伪鉴别, 掺伪与品质分析中的应用). Beijing: Beijing Forestry University(北京: 北京林业大学), 2013.

[22] Gok S, Severcan M, Goormaghtigh E, et al. Food Chemistry, 2015, 170: 234.

[23] ZHAO Yan-li, ZHANG Ji, YUAN Tian-jun, et al(赵艳丽, 张 霁, 袁天军, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2014, 34(7): 1831.

[24] Kwon Y K, Jie E Y, Sartie A, et al. Food Chemistry, 2015, 166: 389.

[25] SHAO Xue-guang, NING Yu, LIU Feng-xia, et al(邵学广, 宁 宇, 刘凤霞, 等). Acta Chimica Sinica(化学学报), 2012, 70(20): 2109.

[26] ZHU Xiang-rong, LI Gao-yang, HUANG Lü-hong, et al(朱向荣, 李高阳, 黄绿红, 等). Chinese Journal of Analytical Chemistry(分析化学), 2015, 4: 029.

[27] Oudghiri F, García-Morales J L, Allali N, et al. International Journal of Environmental Research, 2014, 8(4): 1093.

[28] Li J, Zhang Y, Cai W, et al. Talanta, 2011, 84(3): 679.

[29] NING Yu, CAI Wen-sheng, SHAO Xue-guang(宁 宇, 蔡文生, 邵学广). Chemical Journal of Chinese Universities(高等学校化学学报), 2012, 33(04): 673.

[30] Zhu X, Li G, Shan Y. International Journal of Food Science & Technology, 2015, 50(5): 1123.

[31] Moros J, Vallejuelo S F O, Gredilla A, et al. Environmental Science & Technology, 2009, 43(24): 9314.

[32] Wiejak A, Wang Y, Zhang J, et al. Journal of Environmental Science and Health, Part B, 2014, 49(11): 811.

杨天伟, 张霁, 李涛, 王元忠, 刘鸿高. 红外光谱结合化学计量学方法快速鉴别牛肝菌种类及总汞含量分析[J]. 光谱学与光谱分析, 2016, 36(11): 3510. YANG Tian-wei, ZHANG Ji, LI Tao, WANG Yuan-zhong, LIU Hong-gao. Infrared Spectroscopy Combined with Chemometrics for Rapid Discrimination on Species of Bolete Mushrooms and an Analysis of Total Mercury[J]. Spectroscopy and Spectral Analysis, 2016, 36(11): 3510.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!