作者单位
摘要
1 热带药用植物化学教育部重点实验室, 海南 海口  571158
2 海南师范大学 化学与化工学院, 海南 海口  571158
设计合成了一种含双酯基的1,2,3-三氮唑化合物,与罗丹明B酰肼结合生成了具有“开-关”性质的荧光探针(简称L2),应用光谱学表征了L2的物理化学参数。L2分别在DMF/Tris-HCl(1∶1,v/v,pH=6.0,20 μmol/L)和MeOH(20 μmol/L)溶液中对Hg2+和ClO-显示出高选择性和灵敏性;利用荧光和紫外光谱分别测定了L2对19种金属离子和14种阴离子的光学性能。实验表明,Hg2+和ClO-的存在使得L2在585 nm和576 nm均有一个新的发射峰出现;同时伴随着荧光强度明显的增强,溶液体系发生了裸眼能识别的显色变化,表明Hg2+可以将罗丹明分子的酰肼闭环结构转换为开环结构,并以1∶2的比例方式生成了一种新配合物,这也被质谱、工作曲线、核磁滴定和TD-DFT计算的结果所证实;L2对Hg2+和ClO-的检测限分别为7.45 nmol/L和 0.67 μmol/L。此外,生物活性测定显示L2对HeLa细胞有非常低的毒性,并且可用于HeLa细胞中Hg2+和ClO-的细胞成像,表明L2在体内可进行微测定Hg2+和ClO-的巨大潜力。
1,2,3-三氮唑 罗丹明B Hg2+ ClO- 细胞成像 1,2,3-triazole rhodamine B Hg2+ ClO- cell imaging 
发光学报
2024, 45(2): 351
作者单位
摘要
1 1.福建工程学院 电子电气与物理学院, 福州 350108
2 2.中国科学院 福建物质结构研究所, 光电材料化学与物理重点实验室, 福州 350002
作为实现全固态激光器频率转换功能的关键材料, 紫外非线性光学晶体发挥着不可替代的作用。设计兼具大的非线性光学系数、合适的双折射和宽带隙的紫外非线性光学晶体仍然是该领域亟待攻克的一个难题。由于具有宽的带隙, 硫酸盐已成为紫外非线性光学晶体领域的一个重要研究方向。SO4四面体基团具有接近非极性的Td对称性, 使其极化率各向异性和二阶极化率较小, 因而对晶体的非线性系数和双折射贡献很小。通常引入畸变程度高的阳离子多面体可以增加晶体的非线性效应和双折射。本工作将易于形成畸变多面体的Hg2+离子引入到硫酸盐体系中, 采用高温熔体法合成出新型非线性光学晶体材料Rb3Hg2(SO4)3Cl。该晶体属于单斜晶系, 空间群为P21, 晶胞参数为a=0.78653(2) nm, b=0.97901(2) nm, c=1.00104(3) nm, β=110.95(3), Z=2。其晶体结构由[SO4]四面体、[HgO5]和[HgO4Cl]多面体以角共享的方式连接形成空间网状结构, 而Rb+填充在孔洞中。Rb3Hg2(SO4)3Cl晶体的粉末倍频效应为1.5倍KDP, 且能够在可见光区实现相位匹配。紫外漫反射光谱测试表明, 紫外截止边为251 nm, 对应光学带隙为4.94 eV。利用偏光显微镜确定该晶体在546.1 nm处的双折射为0.04。此外, 第一性原理计算表明, 晶体的非线性系数主要来源于扭曲的[HgO5]、[HgO4Cl]和[SO4]多面体。上述结果表明, Rb3Hg2(SO4)3Cl是具有潜在应用前景的紫外非线性光学晶体材料。
紫外 汞基硫酸盐 非线性光学晶体 晶体结构 ultraviolet Hg-based sulfate nonlinear optical crystal crystal structure 
无机材料学报
2023, 38(7): 778
Author Affiliations
Abstract
MOE Key Laboratory of Laser Life Science, & Institute of Laser Life Science, College of Biophotonics South China Normal University, Guangzhou 510631, P. R. China
This work demonstrates a smartphone-based automated fluorescence analysis system (SAFAS) for point-of-care testing (POCT) of Hg(II). This system consists of three modules. The smartphone module is used to provide an excitation light source, and to collect and analyze fluorescent images. The dark box module is applied to integrate the desired optical elements and offers a dark environment. The cost of the integrated dark box mainly includes the upper cover, box body, lower bottom, fixture and some optical elements which is about $109. The chip module is used for fluorescence sensing, which is composed of an upper plate, bottom plate and cloth-based chip. Due to the integration of multiple smartphone functions, the SAFAS eliminates the need for additional power sources, light sources and analysis systems. The dark box and upper and bottom plates are made by 3D printer. The cloth-based chip (about $0.005 for each chip) is fabricated using the wax screen-printing technique, with no need for expensive and complex fabrication equipments. To our knowledge, the cloth-based microfluidic fluorescence detection method combined with smartphone functions is first reported. By using optimal conditions, the designed system can realize the quantitative detection of Hg(II), which has a linear range of 0.001–100μgmL?1 and a detection limit of 0.5ngmL?1. Additionally, the SAFAS has been successfully applied for detecting Hg(II) in actual water samples, with recoveries of 100.1%–111%, RSDs of 3.88%–9.74%, and fast detection time of about 1 min. Obviously, the proposed SAFAS has the advantages of high sensitivity, wide dynamic range, acceptable reproducibility, good stability and low cost. Therefore, it is believed that the presented SAFAS has great potential to perform the POCT of Hg(II) in different water samples.This work demonstrates a smartphone-based automated fluorescence analysis system (SAFAS) for point-of-care testing (POCT) of Hg(II). This system consists of three modules. The smartphone module is used to provide an excitation light source, and to collect and analyze fluorescent images. The dark box module is applied to integrate the desired optical elements and offers a dark environment. The cost of the integrated dark box mainly includes the upper cover, box body, lower bottom, fixture and some optical elements which is about $109. The chip module is used for fluorescence sensing, which is composed of an upper plate, bottom plate and cloth-based chip. Due to the integration of multiple smartphone functions, the SAFAS eliminates the need for additional power sources, light sources and analysis systems. The dark box and upper and bottom plates are made by 3D printer. The cloth-based chip (about $0.005 for each chip) is fabricated using the wax screen-printing technique, with no need for expensive and complex fabrication equipments. To our knowledge, the cloth-based microfluidic fluorescence detection method combined with smartphone functions is first reported. By using optimal conditions, the designed system can realize the quantitative detection of Hg(II), which has a linear range of 0.001–100μgmL?1 and a detection limit of 0.5ngmL?1. Additionally, the SAFAS has been successfully applied for detecting Hg(II) in actual water samples, with recoveries of 100.1%–111%, RSDs of 3.88%–9.74%, and fast detection time of about 1 min. Obviously, the proposed SAFAS has the advantages of high sensitivity, wide dynamic range, acceptable reproducibility, good stability and low cost. Therefore, it is believed that the presented SAFAS has great potential to perform the POCT of Hg(II) in different water samples.
Smartphone automated fluorescence detection cloth-based chip point-of-care testing Hg(II) 
Journal of Innovative Optical Health Sciences
2022, 15(5): 2250028
作者单位
摘要
1 红外材料与器件重点实验室,中科院上海技术物理研究所,上海 200083
2 国科大杭州高等研究院,浙江 杭州 310024
对不同钝化层结构的分子束外延(MBE)生长的HgCdTe外延材料的Hg空位浓度控制进行研究。获得了更高Hg空位浓度调控范围的外延材料,为后续新型焦平面器件的研发提供基础。研究发现,在热退火过程中,HgCdTe外延材料的Hg空位浓度的变化随着钝化层结构的不同而发生改变。且这种改变是因为HgCdTe表层的钝化层的存在改变了原始热退火的平衡态过程。同时,通过二次离子质谱(SIMS)测试以及相应的理论拟合进行了验证。
碲镉汞 Hg空位 钝化层 热退火 HgCdTe Hg vacancy passivation layer thermal annealing 
红外与毫米波学报
2022, 41(2): 425
作者单位
摘要
1 福建农林大学金山学院, 福建 福州 350002
2 福建农林大学, 福建 福州 350002
3 重庆海关技术中心, 重庆 401147
以柠檬汁和尿素为原料, 通过一步简单的微波热解制得了含氮荧光碳点(NCDs)。所得碳点发蓝色荧光, 量子产率高达53.1%。Hg2+可以与NCDs表面基团络合形成非荧光的稳定化合物, 导致荧光猝灭。通过荧光猝灭与寿命的关系和紫外-可见光谱的变化情况得出猝灭应属静态猝灭。另外, 卡托普利的加入可以使NCDs荧光得以恢复, 这是因为Hg2+与卡托普利的成键作用强于NCDs, 卡托普利的加入使Hg2+ 脱离NCDs表面, 荧光得以恢复。在最优化的实验条件下, 卡托普利的检测范围是0.25~25 μmol·L-1, 检出限为0.17 μmol·L-1。该探针成功地用于卡托普利片剂中有效成分的测试并取得了满意的效果。
碳点 荧光 卡托普利 carbon dots fluorescence captopril Hg(Ⅱ) Hg(Ⅱ) 
发光学报
2022, 43(3): 430
作者单位
摘要
华北光电技术研究所,北京100015
碲镉汞材料是制造红外探测器的基础,高性能红外探测器对碲镉汞材料的要求越来越高。为了提升器件性能,必须提高碲镉汞材料的电学性能。而掺杂是一个很好的选择。碲镉汞材料掺杂可以分为n型和p型两种。对于n型掺杂来说,In是一种理想的掺杂剂,其掺杂研究目前已比较成熟。相对而言,p型掺杂研究还不是那么深入。Hg空位、Au、As掺杂均为碲镉汞材料中常见的p型掺杂手段。通过分析和总结近些年的部分相关文献,介绍了碲镉汞材料中Hg空位、Au、As掺杂的研究进展。
碲镉汞 Hg空位掺杂 Au掺杂 As掺杂 HgCdTe Hg vacancy doping Au doping As doping 
红外
2021, 42(2): 15
作者单位
摘要
华侨大学 信息科学与工程学院,福建 厦门 361021
采用蓝光二极管(LD)离轴泵浦Pr:YLF晶体和谐振腔调控,开展了直接输出720 nm激光的空心光束和高阶横模特性的理论和实验研究.基于高阶厄米-高斯光束(HG)光强特征理论,数值模拟了厄米-高斯光束(HG)与拉盖尔-高斯光束(LG)之间的模态转换特性.实验中,采用442 nm蓝光LD作为激光泵浦源,在紧凑的平凹谐振腔内使激光起振.通过LD离轴泵浦Pr:YLF晶体和谐振腔调节手段,直接获得空心和高阶HG模式的720 nm激光输出.同时,理论分析了HG模式相干叠加产生不同空间模态的光强分布,实验结果证实高阶HG光束与理论计算基本一致.本文方法在粒子操控、光学微加工和光通信等领域具有潜在应用价值.
Pr:YLF激光器 可见光波 蓝光泵浦 高阶横模 固体激光 Pr:YLF laser Visible light Blue laser-diode pumping High-order Hermite-Gaussian(HG) beams Solid-state laser 
光子学报
2020, 49(10): 1014001
作者单位
摘要
1 湖南大学化学化工学院, 湖南 长沙 410082
2 湖南省生态环境监测中心, 国家环境保护重金属污染监测重点实验室, 湖南 长沙 410019
3 济源市环境监测站, 河南省土壤重金属污染监测与修复重点实验室, 河南 济源 454650
建立了王水水浴消解-原子荧光光谱法测定土壤和沉积物中砷、 汞、 硒、 锑和铋。 将试样置于50 mL具塞玻璃比色管中, 加入10 mL王水(1+1), 于沸水浴中消解2 h, 取出冷却后, 超纯水定容, 摇匀后取上清液待测。 相比于微波消解的昂贵设备和低安全(高温高压)性, 水浴消解法具有设备简单、 易操作、 重复性高等优点; 同时由于实际样品中汞、 硒和铋的含量都比较低, 水浴消解后的试样能直接上机测定, 可以大大地简化操作过程。 重点研究了硼氢化钾浓度对检测灵敏度的影响, 结果表明, 相同仪器条件下, 对于砷、 硒、 锑和铋元素, 高的硼氢化钾浓度能在一定程度上提高其荧光强度; 而对于汞而言, 低的硼氢化钾浓度反而能增加其荧光强度, 当采用0.1%硼氢化钾作为还原剂时, 汞可以获得较好的检测灵敏度。 通过比较不同预还原剂对测定结果的影响, 验证了该方法测定样品中硒的可靠性, 数据表明, 该方法消解所用的盐酸量足够将Se(Ⅵ)还原成Se(Ⅳ), 不仅不需要额外添加盐酸或硫脲, 向样品中添加硫脲反而会使测定结果偏低很多。 仪器最佳条件下, 采用王水水浴消解-原子荧光光谱法测定土壤或沉积物中砷、 汞、 硒、 锑和铋的方法检出限分别为0.008, 0.002, 0.002, 0.005和0.003 mg·kg-1(取样量为0.500 0 g, 定容体积为50 mL), 测定下限分别为0.032, 0.008, 0.008, 0.020和0.012 mg·kg-1。 该方法用于测定土壤/沉积物标准样品中砷、 汞、 硒、 锑和铋的相对误差范围分别为-3.3%~4.5%, -3.9%~15%, -20%~-7.8%, -13%~3.4%和2.2%~7.0%; 该方法用于测定实际样品, 相对标准偏差范围为1.3%~11%。 采用水浴消解原子荧光光谱法测定土壤和沉积物中砷、 汞、 硒、 锑和铋, 具有操作简便、 无需转移容器、 普及性强、 检出限低、 精密度和准确度好等优点, 分析结果满足环境监测要求。
水溶消解 原子荧光光谱法 土壤和沉积物 砷汞硒锑铋 Water bath digestion Atomic fluorescence spectrometry Soil and sediments As/Hg/Se/Sb/Bi 
光谱学与光谱分析
2020, 40(5): 1528
作者单位
摘要
集美大学食品与生物工程学院, 福建 厦门 361021
水环境中Hg(Ⅱ)的污染对生态环境和人类健康危害极大, 目前Hg(Ⅱ)的检测主要有原子光谱/质谱和电化学等方法, 但存在检测仪器昂贵、 操作繁琐及前处理复杂等缺点, 难以在日常水环境中微量Hg(Ⅱ)现场检测的应用。 因此, 建立一种灵敏、 准确、 快捷和经济的水中Hg(Ⅱ)检测方法具有重要意义。 试纸法是将普通的化学反应从玻璃仪器转移到试纸上进行的一种快速检测方法, 利用试剂与目标物之间产生的化学反应, 通过颜色的变化可对目标物进行定性或半定量检测, 具有操作简便、 快速等优点。 碳量子点是一类粒径小于10 nm的碳基纳米材料, 具有优异的荧光性能、 较低的毒性和较高的化学稳定性。 利用Hg(Ⅱ)对碳量子点的荧光具有灵敏和高效的猝灭作用, 构建了一种双色比率荧光试纸片用于快速检测水中微量Hg(Ⅱ)的含量。 其中, 采用氮掺杂水溶性碳量子点(NCDs)作为荧光响应信号、 罗丹明B(RhB)作为荧光内标信号, 在单一波长(355 nm)激发下产生位于440和580 nm的双色荧光发射峰。 当体系加入不同浓度Hg(Ⅱ)后, NCDs表面官能团与Hg(Ⅱ)之间的静电作用和金属配位协同作用使荧光发生猝灭, 而RhB的荧光信号保持不变, 利用440和580 nm双色荧光信号或其强度的比值(F440/F580), 可实现对微量Hg(Ⅱ)的快速检测。 实验对检测条件进行了优化, 结果表明在HAc-NaAc缓冲液浓度为1 mmol·L-1、 pH为7的条件下, F440/F580值与Hg(Ⅱ)浓度(0~3 μmol·L-1)呈现良好的线性关系, 线性方程为F440/F580=-0.785 2cHg(Ⅱ)+3.103 8, 相关系数r>0.99, 以3倍标准偏差计算的检出限为2.7 nmol·L-1(n=9)。 对湖水与自来水中Hg(Ⅱ)进行加标回收实验, 其加标回收率在91.9%~117.9%之间, 说明该方法灵敏、 准确, 能用于水中Hg(Ⅱ)的检测。 同时, 将NCDs和RhB浸渍于尼龙片上构建了双色比率荧光检测试纸片, 在紫外灯(365nm)照射下可观测到试纸发射淡蓝紫色荧光。 而随着Hg(Ⅱ)浓度的增加, 荧光颜色从淡蓝紫色到橙色发生变化, 每次检测时间只需3分钟, 裸眼可检出Hg(Ⅱ)浓度低至10 nmol·L-1, 实现了对水中微量Hg(Ⅱ)的灵敏、 快速检测。 此外, 该方法对Hg(Ⅱ)的检测表现出良好的特异性。 因此, 基于碳量子点和罗丹明B构建的双色比率荧光试纸片具有携带方便、 操作简单, 以及灵敏和快速等优点, 为水中微量Hg(Ⅱ)的快速检测提供了新的方法和思路。
荧光试纸片 目视比色法 碳量子点 Dual-emissive fluorescent paper strip Visual colorimetry Carbon dots Hg(Ⅱ) Hg(Ⅱ) 
光谱学与光谱分析
2019, 39(11): 3426
作者单位
摘要
华侨大学 信息科学与工程学院 福建省光传输与变换重点实验室, 福建 厦门 361021
从理论和实验上研究了从激光器直接输出高阶拉盖尔-高斯(LG)光束和高阶厄密-高斯(HG)光束。首先从理论上研究了高阶LG光束和高阶HG光束的光强分布特性, 并进行数值仿真。在实验研究中, 利用445 nm的蓝光半导体激光器端面泵浦Pr:YLF晶体, 在一定的条件下, 能从平凹腔直接输出640 nm波长高阶LG光束和高阶HG光束。实验结果表明: 从激光腔内输出的高阶LG光束和高阶HG光束与理论仿真基本一致。文中所报道的获得高阶模的实验装置简单, 对产生高阶光束及其应用具有较重要价值。
高阶拉盖尔-高斯光束 高阶厄密-高斯光束 蓝光半导体激光器 平凹腔 Pr:YLF晶体 higher-order Laguerre-Gaussian (LG) beams higher-order Hermite-Gaussian (HG) beams blue semiconductor laser plano-concave cavity Pr:YLF crystal 
红外与激光工程
2018, 47(6): 0606002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!