发光学报, 2013, 34 (7): 877, 网络出版: 2013-07-16   

TCTA对红绿磷光有机电致发光器件发光层激子的调控作用

Effect of TCTA Layer on Exciton Positions of Red and Green Phosphorescent Organic Light Emitting Diodes
作者单位
陕西科技大学 电气与信息工程学院, 陕西 西安710021
摘要
制备了结构为ITO/MoO3(50 nm)/NPB(40 nm)/TCTA(10 nm)/CBP∶14%GIr1(30 nm)/TCTA(x)/CBP∶2%R-4B(10 nm)/BCP(10 nm)/Alq3(40 nm)/LiF(1 nm)/Al(100 nm)的红绿磷光有机电致发光器件, GIr1和R-4B分别为红、绿磷光染料。通过在红绿间插入较薄间隔层TCTA的方法, 调节载流子、激子在红绿发光层中的分布, 并结合TCTA和BCP对发光层内载流子和激子的有效阻挡作用, 研究了载流子调控层TCTA在不同厚度下对器件发光性能的影响。结果表明, TCTA为1 nm时, 器件的发光性能得到了很好的提升。电压为6 V时, TCTA为1 nm器件的电流密度、亮度、最大电流效率分别为0.509 mA/cm2、69.91 cd/m2和13.72 cd/A, 而TCTA为0 nm器件的电流密度、亮度、最大电流效率分别为1.848 mA/cm2、215.7 cd/m2和11.67 cd/A。
Abstract
Red and green phosphorescent organic light emitting diodes were fabricated, utilizing GIr1 and R-4B (novel red and green) phosphorescent materials. Device structure was ITO/MoO3(50 nm)/NPB(40 nm)/TCTA(10 nm)/CBP∶14%GIr1(30 nm)/TCTA(x)/CBP∶2%R-4B(10 nm)/BCP(10 nm)/Alq3 (40 nm)/LiF(1 nm)/ Al(100 nm). The luminescent properties were studied by inserting different thickness of TCTA (regulation of carrier) spacer layer between red and green emitting layer to adjust the distribution of carriers and excitons. The results showed that the optimum performance of OLED was achieved when the thickness of TCTA spacer layer is 1 nm. The maximum the device performance reached 13.72 cd/A, 0.509 mA/cm2 and 69.91 cd/m2 at 6 V. While for 0 nm (none spacer), the device performance reached 11.67 cd/A, 1.848 mA/cm2 and 215.7 cd/m2 at 6 V.
参考文献

[1] Xiao Y, Yang J P, Cheng P P, et al. Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles [J]. Appl. Phys. Lett., 2012, 100(1):013308-1-3.

[2] Li Q, Zhao J, Wang Q, et al. Effect of spacer on white organic light-emitting devices consisted of double light-emitting layers [J]. Chin. J. Lumin.(发光学报), 2012, 33(1):45-49 (in Chinese).

[3] Liu F L, Ruden P P, Camphell L H, et al. Exciplex current mechanism for ambipolar bilayer organic light emitting diodes [J]. Appl. Phys. Lett., 2011, 99(12):123301-1-3.

[4] Yook K S, Kim O K, Lee J Y. Lifetime study of single layer and stacked white organic light-emitting diodes [J]. Synthetic Met., 2012, 161(10):2671-2681.

[5] Han C M, Xie G H, Zhang Z S, et al. A single phosphine oxide host for high-efficiency white organic light-emitting diodes with extremely low operating voltages and reduced efficiency roll-off [J]. Adv. Funct. Mater., 2011, 23(4):2491-2496.

[6] Zhang G H, Chou H H, Jiang X Q, et al. Highly efficient organic light-emitting diodes (OLEDs) based on an iridium complex with rigid cyclometalated ligand [J]. Org. Electron., 2010, 11(4):632-640.

[7] Fang Z L. Semiconductor Lighting Technology [M] Beijing: Electronics Industry Press, 2010:164.

[8] Moraes I R, Schol S, Lussem B, et al. Analysis of chemical degradation mechanism within sky blue phosphorescent organic light emitting diodes by laser-desorption/ionization time-of-flight mass spectrometry [J]. Org. Electron., 2011, 12(2):341-347.

[9] Liu C B, Zhao J, Su B, et al. Research progress of Re (I) complexes in OLEDs [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2012, 27(6):742-751 (in Chinese).

[10] Ding L, Zhang F H, Ma Y, et al. Novel microcavity OLEDs with double hole injection layer [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2011, 26(4):496-500 (in Chinese).

[11] Seo H J, Yoo K M, Song M, et al. Deep-blue phosphorescent iridium complexes with picolinic acid N-oxide as the ancillary ligand for high efficiency organic light-emitting diodes [J]. Org. Electron., 2010, 11(4):564-572.

[12] Seo C W, Yoon J H, Lee J Y. Engineering of charge transport materials for universal low optimum doping concentration in phosphorescent organic light-emitting diodes [J]. Org. Electron., 2012, 13(2):413-469.

[13] Zhu H N, Xu Z, Zhao S L, et al. Influence of well structure on efficiency of organic light-emitting diodes [J]. Acta Phys. Sinica (物理学报), 2010, 59(11): 8093-8096 (in Chinese).

[14] Gao L Y, Zhao S L, Xu Z, et al. Luminescence characteristics of PVK doped with Ir(Fppy)3 [J]. Spectrosc. Spect. Anal.(光谱学与光谱分析), 2011, 31(9):2328-2331 (in Chinese).

张微, 张方辉, 黄晋. TCTA对红绿磷光有机电致发光器件发光层激子的调控作用[J]. 发光学报, 2013, 34(7): 877. ZHANG Wei, ZHANG Fang-hui, HUANG Jin. Effect of TCTA Layer on Exciton Positions of Red and Green Phosphorescent Organic Light Emitting Diodes[J]. Chinese Journal of Luminescence, 2013, 34(7): 877.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!