光学学报, 2010, 30 (10): 2967, 网络出版: 2012-10-24   

ZnO/MgZnO单量子阱的能带重正化与阱宽的关系

Well Width Dependence of Band Gap Renormalization of Single ZnO/MgZnO Quantum Well
作者单位
1 中山大学光电材料与技术国家重点实验室, 广东 广州 510275
2 厦门大学物理系半导体光子学研究中心, 福建 厦门 361005
摘要
通过室温下的时间积分光致发光(PL)谱,研究了阱宽Lw渐变的ZnO/Mg0.1Zn0.9O单量子阱在高激发强度下的能带重正化与阱宽的关系。实验中光生载流子浓度为n=1.6×1014 cm-2,在Lw从2.3 nm渐变到4.3 nm,PL谱峰位的红移量从5.9 meV变化到97.1 meV。红移量随阱宽增大而增加,但增加率却逐渐减少。当Lw>2αB(αB,ZnO体材料激子玻尔半径,约为2 nm)时,红移量逐渐呈现出饱和的趋势(100 meV)。研究发现峰位的红移是由于多体效应所导致的能隙收缩以及在高的激发强度下带内填充效应的这两种机理相互竞争的结果。
Abstract
Band gap renormalization of ZnO/Mg0.1Zn0.9O single quantum well (QW) with gradual well width (Lw) is studied by room-temperature time integrated photoluminescence (PL) spectra at high excitation power density. The photo-generated carrier density is n=1.6×1014 cm-2 and the magnitude of red shift of PL spectrum peak increases from 5.9 meV to 97.1 meV with Lw changing from 2.3 nm to 4.3 nm. With Lw increaseing, the red shift increases but the increase rate gradually decreases. When Lw>2αB(αB, the exciton Bohr radius of ZnO bulk, is about 2 nm), the red shift starts to be gradually saturated. It is found that the red shift is the competition result of energy gap contraction due to many body effect and intraband filling effect at high excitation power density. The result is useful for designing and application of ZnO QW-based optoelectronic devices.
参考文献

[1] 谭天亚, 陈俊杰, 江雪. 纳米微晶结构氧化锌中激子发光的研究进展[J]. 激光与光电子学进展, 2008, 45(9): 25~30

    T. Tianya, C. Junjie, J. Xue. Research progress of excitonic luminescence in zinc oxide [J]. Laser & Optoelectronics Progress, 2008, 45(9): 25~30

[2] K. Zheng, C. Xu, H. Zhou et al.. Patterned growth of ZnO nanofibers [J]. Chin. Opt. Lett., 2009, 7(3): 238~239

[3] 陈江博, 王丽, 苏雪琼 等. 基片温度对脉冲激光沉积ZnO薄膜性质的影响[J]. 中国激光, 2009, 36(6): 1539~1544

    C. Jiangbo, W. Li, S. Xueqiong et al.. Affect of ZnO thin film of pulsed laser deposition by substrate temperatures [J]. Chinese J. Lasers, 2009, 36(6): 1539~1544

[4] 王怡, 江伟, 邢光建 等. ZnO薄膜紫外探测器的光电性质[J]. 中国激光, 2008, 35(12): 284~287

    W. Yi, J. Wei, X. Guangjian et al.. Photocurrent of ultraviolet photoconductive detectors with ZnO thin film [J]. Chinese J. Lasers, 2008, 35(12): 284~287

[5] S. H. Park, D. Ahn. Spontaneous and piezoelectric polarization effects in wurtzite ZnO/MgZnO quantum well lasers [J]. Appl. Phys. Lett., 2005, 87(25): 253503~253509

[6] S. Zaitsev, D. Yakovlev, A. Waag. Renormalization of the band gap in highly photoexcited type-II ZnSe/BeTe structures [J]. Semiconductors, 2009, 43(2): 212~217

[7] P. Seoung-Hwan. Many-body optical gain of GaInNAs/GaAs strained quantum-well lasers [J]. Appl. Phys. Lett., 2004, 85(6): 890~892

[8] M. R. Kim, C. Tong. Many-body effects for a quasi-two-dimensional electron-hole plasma including finite well-width [J]. Phys. Stat. Sol.(b), 2001, 225(1): 185~191

[9] M. R. Kim, C. H. Kim, B. H. Han. Exchange-correlation induced energy-level shift in quantum wells with strain [J]. J. Appl. Phys., 1998, 83(6): 3197~3202

[10] G. Bongiovanni, J. L. Staehli. Properties of the electron-hole plasma in GaAs-(Ga,Al)As quantum wells: the influence of the finite well width [J]. Phys. Rev. B, 1989, 39(12): 8359~8363

[11] G. Trnkle, H. Leier, A. Forchel et al.. Dimensionality dependence of the band-gap renormalization in two- and three-dimensional electron-hole plasmas in GaAs [J]. Phys. Rev. Lett., 1987, 58(4): 419~422

[12] S. Das Sarma, R. Jalabert, S. R. E. Yang. Band-gap renormalization in semiconductor quantum wells [J]. Phys. Rev. B, 1990, 41(12): 8288~8294

[13] P. Vashishta, R. K. Kalia. Universal behavior of exchange-correlation energy in electron-hole liquid [J]. Phys. Rev. B, 1982, 25(10): 6492~6495

[14] A. Yamamoto, T. Kido, T. Goto et al.. Bandgap renormalization of ZnO epitaxial thin films [J]. Solid State Commun., 2002, 122(1-2): 29~32

[15] B. P. Zhang, B. L. Liu, J. Z. Yu et al.. Photoluminescence and built-in electric field in ZnO/Mg0.1Zn0.9O quantum wells [J]. Appl. Phys. Lett., 2007, 90(13): 132113

[16] K. Claus, H. Robert, F. Johannes et al.. Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing [J]. Phys. Rev. B, 2007, 75(11): 115203~115211

[17] E. Kuokstis, J. W. Yang, G. Simin et al.. Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells [J]. Appl. Phys. Lett., 2002, 80(6): 977~979

[18] N. Pauc, V. Calvo, J. Eymery et al.. Two-dimensional electron-hole liquid in single Si quantum wells with large electronic and dielectric confinement [J]. Phys. Rev. Lett., 2004, 92(23): 236802~236805

[19] Y. J. Wang, S. J. Xu, Q. Li et al.. Band gap renormalization and carrier localization effects in InGaN/GaN quantum-wells light emitting diodes with Si doped barriers [J]. Appl. Phys. Lett., 2006, 88(4): 041903

李小龙, 姜小芳, 雷小燕, 丘志仁, 张保平, 丁才蓉, 曾学然. ZnO/MgZnO单量子阱的能带重正化与阱宽的关系[J]. 光学学报, 2010, 30(10): 2967. Li Xiaolong, Jiang Xiaofang, Lei Xiaoyan, Qiu Zhiren, Zhang Baoping, Ding Cairong, Zeng Xueran. Well Width Dependence of Band Gap Renormalization of Single ZnO/MgZnO Quantum Well[J]. Acta Optica Sinica, 2010, 30(10): 2967.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!