激光与光电子学进展, 2020, 57 (11): 111406, 网络出版: 2020-06-02   

飞秒激光制备可控微纳米结构表面及应用研究 下载: 2536次特邀综述

Controllable Micro/Nano Structure Surface Fabricated by Femtosecond Laser and Its Applications
作者单位
1 中国科学技术大学微电子学院, 安徽 合肥 230026
2 中国科学技术大学微纳研究与制造中心, 安徽 合肥 230026
3 中国科学技术大学精密机械与精密仪器系, 安徽 合肥 230026
4 南通职业大学机械工程学院, 江苏 南通 226007
5 合肥师范学院化学与化学工程学院, 安徽 合肥 230601
引用该论文

边玉成, 王宇龙, 肖轶, 张迎辉, 焦云龙, 吴东, 周成刚, 姚成立. 飞秒激光制备可控微纳米结构表面及应用研究[J]. 激光与光电子学进展, 2020, 57(11): 111406.

Yucheng Bian, Yulong Wang, Yi Xiao, Yinghui Zhang, Yunlong Jiao, Dong Wu, Chenggang Zhou, Chengli Yao. Controllable Micro/Nano Structure Surface Fabricated by Femtosecond Laser and Its Applications[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111406.

参考文献

[1] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8.

[2] Bohn H F, Federle W. Insect aquaplaning: nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(39): 14138-14143.

[3] Autumn K. LiangY A, Hsieh S T, et al. Adhesive force of a single gecko foot-hair[J]. Nature, 2000, 405(6787): 681-685.

[4] Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34.

[5] Liu M J, Wang S T, Wei Z X, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Advanced Materials, 2009, 21(6): 665-669.

[6] Srinivasarao M. Nano-optics in the biological world: beetles, butterflies, birds, and moths[J]. Chemical Reviews, 1999, 99(7): 1935-1962.

[7] Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 3(2): 178-182.

[8] Zhang M Q, Feng S L, Wang L, et al. Lotus effect in wetting and self-cleaning[J]. Biotribology, 2016, 5: 31-43.

[9] Ma Q L, Cheng H F, Fane A G, et al. Recent development of advanced materials with special wettability for selective oil/water separation[J]. Small, 2016, 12(16): 2186-2202.

[10] Zhang S N, Huang J Y, Cheng Y, et al. Bioinspired surfaces with superwettability for anti-icing and ice-phobic application: concept, mechanism, and design[J]. Small, 2017, 13(48): 1701867.

[11] Zhang S N, Huang J Y, Chen Z, et al. Bioinspired special wettability surfaces: from fundamental research to water harvesting applications[J]. Small, 2017, 13(3): 1602992.

[12] Shiu J Y, Kuo C W, Chen P L, et al. Fabrication of tunable superhydrophobic surfaces by nanosphere lithography[J]. Chemistry of Materials, 2004, 16(4): 561-564.

[13] Shirtcliffe N J. McHale G, Newton M I, et al. Intrinsically superhydrophobic organosilica sol-gel foams[J]. Langmuir, 2003, 19(14): 5626-5631.

[14] Fiorilli S, Rivolo P, Descrovi E, et al. Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates[J]. Journal of Colloid and Interface Science, 2008, 321(1): 235-241.

[15] Darmanin T, Nicolas M, Guittard F. Electrodeposited polymer films with both superhydrophobicity and superoleophilicity[J]. Physical Chemistry Chemical Physics, 2008, 10(29): 4322-4326.

[16] Guo C W, Feng L, Zhai J, et al. Large-area fabrication of a nanostructure-induced hydrophobic surface from a hydrophilic polymer[J]. ChemPhysChem, 2004, 5(5): 750-753.

[17] Love J C, Gates B D, Wolfe D B, et al. Fabrication and wetting properties of metallic half-shells with submicron diameters[J]. Nano Letters, 2002, 2(8): 891-894.

[18] Su B, Tian Y, Jiang L. Bioinspired interfaces with superwettability: from materials to chemistry[J]. Journal of the American Chemical Society, 2016, 138(6): 1727-1748.

[19] Li S H, Huang J Y, Chen Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications[J]. Journal of Materials Chemistry A, 2017, 5(1): 31-55.

[20] Jeevahan J, Chandrasekaran M, Britto Joseph G, et al. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 2018, 15(2): 231-250.

[21] Bonse J, Baudach S, Krüger J, et al. Femtosecond laser ablation of silicon-modification thresholds and morphology[J]. Applied Physics A, 2002, 74(1): 19-25.

[22] Venkatakrishnan K, Tan B. Ngoi B K A. Femtosecond pulsed laser ablation of thin gold film[J]. Optics & Laser Technology, 2002, 34(3): 199-202.

[23] Vorobyev A Y, Guo C L. Femtosecond laser structuring of titanium implants[J]. Applied Surface Science, 2007, 253(17): 7272-7280.

[24] Womack M, Vendan M, Molian P. Femtosecond pulsed laser ablation and deposition of thin films of polytetrafluoroethylene[J]. Applied Surface Science, 2004, 221(1/2/3/4): 99-109.

[25] Yong J, Chen F, Huo J, et al. Green, biodegradable, underwater superoleophobic wood sheet for efficient oil/water separation[J]. ACS Omega, 2018, 3(2): 1395-1402.

[26] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2(4): 219-225.

[27] Vorobyev A Y, Guo C L. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews, 2013, 7(3): 385-407.

[28] Juodkazis S, Watanabe M, et al. Femtosecond laser-assisted three-dimensional microfabrication in silica[J]. Optics Letters, 2001, 26(5): 277-279.

[29] Martinez A, Dubov M, Khrushchev I, et al. Direct writing of fibre Bragg gratings by femtosecond laser[J]. Electronics Letters, 2004, 40(19): 1170-1172.

[30] Vorobyev A Y, Guo C L. Multifunctional surfaces produced by femtosecond laser pulses[J]. Journal of Applied Physics, 2015, 117(3): 033103.

[31] Ahmmed K, Grambow C, Kietzig A M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining[J]. Micromachines, 2014, 5(4): 1219-1253.

[32] Yong J L, Chen F, Yang Q, et al. Femtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 2015, 11(46): 8897-8906.

[33] Yong J L, Chen F, Yang Q, et al. Hall of fame article: a review of femtosecond-laser-induced underwater superoleophobic surfaces[J]. Advanced Materials Interfaces, 2018, 5(7): 1870033.

[34] 张径舟, 陈烽, 雍佳乐, 等. 飞秒激光诱导仿生超疏水材料表面的研究进展[J]. 激光与光电子学进展, 2018, 55(11): 110001.

    Zhang J Z, Chen F, Yong J L, et al. Research progress on bioinspired superhydrophobic surface induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110001.

[35] Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860.

[36] AdamN. The physics and chemistry of surfaces[EB/OL]. [2020-03-18].https:∥www.researchgate.net/publication/268944813_The_Physics_and_Chemistry_of_Surfaces.

[37] Vogler E A. Structure and reactivity of water at biomaterial surfaces[J]. Advances in Colloid and Interface Science, 1998, 74(1/2/3): 69-117.

[38] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994.

[39] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551.

[40] Hansen W R, Autumn K. Evidence for self-cleaning in gecko setae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(2): 385-389.

[41] Wang Z K, Zheng H Y, Lim C P, et al. Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation[J]. Applied Physics Letters, 2009, 95(11): 111110.

[42] Neinhuis C. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6): 667-677.

[43] Zhang X, Shi F, Niu J, et al. Superhydrophobic surfaces: from structural control to functional application[J]. Journal of Materials Chemistry, 2008, 18(6): 621-633.

[44] Wang S T, Liu K S, Yao X, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230-8293.

[45] Yong J L, Chen F, Li M J, et al. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces[J]. Journal of Materials Chemistry A, 2017, 5(48): 25249-25257.

[46] Bauer U, Federle W. The insect-trapping rim of Nepenthes pitchers[J]. Plant Signaling & Behavior, 2009, 4(11): 1019-1023.

[47] Bauer U, Bohn H F, Federle W. Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar[J]. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1632): 259-265.

[48] Wong T S, Kang S H. Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447.

[49] Manna U. LynnD M. Fabrication of liquid-infused surfaces using reactive polymer multilayers: principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces[J]. Advanced Materials, 2015, 27(19): 3007-3012.

[50] Yong J L, Chen F, Yang Q, et al. Superoleophobic surfaces[J]. Chemical Society Reviews, 2017, 46(14): 4168-4217.

[51] 杨建军. 飞秒激光超精细“冷”加工技术及其应用(续)[J]. 激光与光电子学进展, 2004, 41(4): 39-47.

    Yang J J. Femtosecond laser "cold" micro-machining and its advanced applications(I)[J]. Laser & Optoelectronics Progress, 2004, 41(4): 39-47.

[52] Shirk M D, Molian P A. A review of ultrashort pulsed laser ablation of materials[J]. Journal of Laser Applications, 1998, 10(1): 18-28.

[53] Nedialkov N N, Atanasov P A, Amoruso S, et al. Laser ablation of metals by femtosecond pulses: theoretical and experimental study[J]. Applied Surface Science, 2007, 253(19): 7761-7766.

[54] Povarnitsyn M E, Itina T E, Sentis M, et al. Material decomposition mechanisms in femtosecond laser interactions with metals[J]. Physical Review B, 2007, 75(23): 235414.

[55] Shinonaga T, Tsukamoto M, Kawa T, et al. Formation of periodic nanostructures using a femtosecond laser to control cell spreading on titanium[J]. Applied Physics B, 2015, 119(3): 493-496.

[56] 乔红贞, 王飞, 张楠, 等. 飞秒激光在钨表面制备二维周期复合结构的研究[J]. 中国激光, 2017, 44(1): 0102010.

    Qiao H Z, Wang F, Zhang N, et al. Femtosecond laser fabrication of two-dimensional periodic composite structures on tungsten surface[J]. Chinese Journal of Lasers, 2017, 44(1): 0102010.

[57] Han Y H, Qu S L. The ripples and nanoparticles on silicon irradiated by femtosecond laser[J]. Chemical Physics Letters, 2010, 495(4/5/6): 241-244.

[58] Liu J K, Jia X, Wu W S, et al. Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse[J]. Optics Express, 2018, 26(5): 6302-6315.

[59] ReifJ, CostacheF, HenykM, et al., 2002, 197/198: 891- 895.

[60] Müller F, Kunz C, Gräf S. Bio-inspired functional surfaces based on laser-induced periodic surface structures[J]. Materials, 2016, 9(6): 476.

[61] Shimotsuma Y, Kazansky P G, Qiu J R, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 2003, 91(24): 247405.

[62] Sakabe S, Hashida M, Tokita S, et al. Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse[J]. Physical Review B, 2009, 79(3): 033409.

[63] Huang M, Cheng Y, Zhao F L, et al. The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale[J]. Annalen Der Physik, 2013, 525(1/2): 74-86.

[64] Jia T Q, Chen H X, Huang M, et al. Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses[J]. Physical Review B, 2005, 72(12): 125429.

[65] Florian C, Skoulas E, Puerto D, et al. Controlling the wettability of steel surfaces processed with femtosecond laser pulses[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36564-36571.

[66] Yin K, Chu D K, Dong X R, et al. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation[J]. Nanoscale, 2017, 9(37): 14229-14235.

[67] Sun T L, Wang G J, Feng L, et al. Reversible switching between superhydrophilicity and superhydrophobicity[J]. Angewandte Chemie International Edition, 2004, 43(3): 357-360.

[68] Patankar N A. On the modeling of hydrophobic contact angles on rough surfaces[J]. Langmuir, 2003, 19(4): 1249-1253.

[69] Onda T, Shibuichi S, Satoh N, et al. Super-water-repellent fractal surfaces[J]. Langmuir, 1996, 12(9): 2125-2127.

[70] Yong J L, Chen F, Yang Q, et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability[J]. Chemical Communications, 2015, 51(48): 9813-9816.

[71] Lu J L, Ngo C V, Singh S C, et al. Bioinspired hierarchical surfaces fabricated by femtosecond laser and hydrothermal method for water harvesting[J]. Langmuir, 2019, 35(9): 3562-3567.

[72] Yang G. Laser ablation in liquids: applications in the synthesis of nanocrystals[J]. Progress in Materials Science, 2007, 52(4): 648-698.

[73] Shen M Y, Crouch C H, Carey J E, et al. Femtosecond laser-induced formation of submicrometer spikes on silicon in water[J]. Applied Physics Letters, 2004, 85(23): 5694-5696.

[74] Li G Q, Zhang Z, Wu P C, et al. One-step facile fabrication of controllable microcone and micromolar silicon arrays with tunable wettability by liquid-assisted femtosecond laser irradiation[J]. RSC Advances, 2016, 6(44): 37463-37471.

[75] Jiang H B, Liu Y Q, Zhang Y L, et al. Reed leaf-inspired graphene films with anisotropic superhydrophobicity[J]. ACS Applied Materials & Interfaces, 2018, 10(21): 18416-18425.

[76] Yao J, Wang J N, Yu Y H, et al. Biomimetic fabrication and characterization of an artificial rice leaf surface with anisotropic wetting[J]. Chinese Science Bulletin, 2012, 57(20): 2631-2634.

[77] Chen H W, Zhang P F, Zhang L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7597): 85-89.

[78] Hancock M J, Sekeroglu K, Demirel M C. Bioinspired directional surfaces for adhesion, wetting, and transport[J]. Advanced Functional Materials, 2012, 22(11): 2223-2234.

[79] Xia D Y, Johnson L M, López G P. Anisotropic wetting surfaces with one-dimesional and directional structures: fabrication approaches, wetting properties and potential applications[J]. Advanced Materials, 2012, 24(10): 1287-1302.

[80] Liu Y, Wang X W, Fei B, et al. Bioinspired, stimuli-responsive, multifunctional superhydrophobic surface with directional wetting, adhesion, and transport of water[J]. Advanced Functional Materials, 2015, 25(31): 5047-5056.

[81] Vorobyev A Y, Guo C L. Water sprints uphill on glass[J]. Journal of Applied Physics, 2010, 108(12): 123512.

[82] Yong J L, Yang Q, Chen F, et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces[J]. Journal of Materials Chemistry A, 2014, 2(15): 5499-5507.

[83] Lu Y, Yu L D, Zhang Z, et al. Biomimetic surfaces with anisotropic sliding wetting by energy-modulation femtosecond laser irradiation for enhanced water collection[J]. RSC Advances, 2017, 7(18): 11170-11179.

[84] Long J Y, Fan P X, Jiang D F, et al. Anisotropic sliding of water droplets on the superhydrophobic surfaces with anisotropic groove-like micro/nano structures[J]. Advanced Materials Interfaces, 2016, 3(24): 1600641.

[85] Fang Y, Yong J, Chen F, et al. Bioinspired fabrication of bi/tridirectionally anisotropic sliding superhydrophobic PDMS surfaces by femtosecond laser[J]. Advanced Materials Interfaces, 2018, 5(6): 1701245.

[86] Chichkov B N, Momma C, Nolte S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2): 109-115.

[87] Li G Q, Fan H, Ren F F, et al. Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration[J]. Journal of Materials Chemistry A, 2016, 4(48): 18832-18840.

[88] Ren F F, Li G Q, Zhang Z, et al. A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection[J]. Journal of Materials Chemistry A, 2017, 5(35): 18403-18408.

[89] Zhang Z, Zhang Y H, Fan H, et al. A Janus oil barrel with tapered microhole arrays for spontaneous high-flux spilled oil absorption and storage[J]. Nanoscale, 2017, 9(41): 15796-15803.

[90] Yong J L, Huo J L, Yang Q, et al. Porous network microstructures: femtosecond laser direct writing of porous network microstructures for fabricating super-slippery surfaces with excellent liquid repellence and anti-cell proliferation[J]. Advanced Materials Interfaces, 2018, 5(7): 1870029.

[91] Zhang Y C, Li Y, Hu Y L, et al. Localized self-growth of reconfigurable architectures induced by a femtosecond laser on a shape-memory polymer[J]. Advanced Materials, 2018, 30(49): 1803072.

[92] Vandenbrink J P, Brown E A, Harmer S L, et al. Turning heads: the biology of solar tracking in sunflower[J]. Plant Science, 2014, 224: 20-26.

[93] Yao X, Song Y L, Jiang L. Applications of bio-inspired special wettable surfaces[J]. Advanced Materials, 2011, 23(6): 719-734.

[94] Vorobyev A Y, Guo C L. Colorizing metals with femtosecond laser pulses[J]. Applied Physics Letters, 2008, 92(4): 041914.

[95] Vorobyev A Y, Guo C L. Femtosecond laser blackening of platinum[J]. Journal of Applied Physics, 2008, 104(5): 053516.

[96] Vorobyev A Y, Makin V S, Guo C L. Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources[J]. Physical Review Letters, 2009, 102(23): 234301.

[97] Vorobyev A Y, Guo C L. Direct creation of black silicon using femtosecond laser pulses[J]. Applied Surface Science, 2011, 257(16): 7291-7294.

[98] Vorobyev A Y, Guo C L. Reflection of femtosecond laser light in multipulse ablation of metals[J]. Journal of Applied Physics, 2011, 110(4): 043102.

[99] Vorobyev A Y, Guo C L. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals[J]. Journal of Applied Physics, 2008, 103(4): 043513.

[100] Anatoliy Y, Guo C L. Metal colorization with femtosecond laser pulses[J]. Proceedings of SPIE, 2008, 7005: 70051T.

[101] Dusser B, Sagan Z, Soder H, et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking[J]. Optics Express, 2010, 18(3): 2913-2924.

[102] Li G Q, Li J W, Hu Y L, et al. Femtosecond laser color marking stainless steel surface with different wavelengths[J]. Applied Physics A, 2015, 118(4): 1189-1196.

[103] Li G Q, Li J W, Hu Y L, et al. Realization of diverse displays for multiple color patterns on metal surfaces[J]. Applied Surface Science, 2014, 316: 451-455.

[104] Yin K, Du H F, Luo Z, et al. Multifunctional micro/nano-patterned PTFE near-superamphiphobic surfaces achieved by a femtosecond laser[J]. Surface and Coatings Technology, 2018, 345: 53-60.

[105] Yong J L, Fang Y, Chen F, et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions[J]. Applied Surface Science, 2016, 389: 1148-1155.

[106] Yu Z W, Yun F F, Wang Y Q, et al. Desert beetle-inspired superwettable patterned surfaces for water harvesting[J]. Small, 2017, 13(36): 1701403.

[107] Kostal E, Stroj S, Kasemann S, et al. Fabrication of biomimetic fog-collecting superhydrophilic-superhydrophobic surface micropatterns using femtosecond lasers[J]. Langmuir, 2018, 34(9): 2933-2941.

[108] Yin K, Yang S, Dong X R, et al. Ultrafast achievement of a superhydrophilic/hydrophobic Janus foam by femtosecond laser ablation for directional water transport and efficient fog harvesting[J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31433-31440.

[109] Yong J L, Chen F, Fang Y, et al. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39863-39871.

[110] Yu C M, Zhu X B, Li K, et al. Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface[J]. Advanced Functional Materials, 2017, 27(29): 1701605.

[111] Jiao Y L, Lv X, Zhang Y Y, et al. Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture[J]. Nanoscale, 2019, 11(3): 1370-1378.

[112] Li G Q, Lu Y, Wu P C, et al. Fish scale inspired design of underwater superoleophobic microcone arrays by sucrose solution assisted femtosecond laser irradiation for multifunctional liquid manipulation[J]. Journal of Materials Chemistry A, 2015, 3(36): 18675-18683.

[113] Huo J L, Yang Q, Chen F, et al. Underwater transparent miniature “mechanical hand” based on femtosecond laser-induced controllable oil-adhesive patterned glass for oil droplet manipulation[J]. Langmuir, 2017, 33(15): 3659-3665.

[114] Yong J L, Yang Q, Chen F, et al. Superoleophobic surfaces: reversible underwater lossless oil droplet transportation[J]. Advanced Materials Interfaces, 2015, 2(2): 1400388.

[115] Yang X L, Choi W T, Liu J Y, et al. Droplet mechanical hand based on anisotropic water adhesion of hydrophobic-superhydrophobic patterned surfaces[J]. Langmuir, 2019, 35(4): 935-942.

[116] Jiao Y L, Li C Z, Lv X, et al. In situ tunable bubble wettability with fast response induced by solution surface tension[J]. Journal of Materials Chemistry A, 2018, 6(42): 20878-20886.

[117] Jiang S J, Hu Y L, Wu H, et al. Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio-inspired assimilatory coloration[J]. Advanced Materials, 2019, 31(15): 1807507.

边玉成, 王宇龙, 肖轶, 张迎辉, 焦云龙, 吴东, 周成刚, 姚成立. 飞秒激光制备可控微纳米结构表面及应用研究[J]. 激光与光电子学进展, 2020, 57(11): 111406. Yucheng Bian, Yulong Wang, Yi Xiao, Yinghui Zhang, Yunlong Jiao, Dong Wu, Chenggang Zhou, Chengli Yao. Controllable Micro/Nano Structure Surface Fabricated by Femtosecond Laser and Its Applications[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111406.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!