中国激光, 2013, 40 (5): 0507001, 网络出版: 2013-04-16   

高斯分布激光散焦距离对激光转印Cu薄膜形貌影响及机理分析

Effect of Defocus Distance on Morphology of Gaussian Distributed Laser Induced Forward Transfer Cu Film and Mechanism Analysis
作者单位
1 哈尔滨工业大学先进焊接与连接国家重点实验室, 黑龙江 哈尔滨 150001
2 英国帝国理工大学电子与电气工程系, 伦敦 SW7 2BT
摘要
激光诱发前向转印(LIFT)技术作为微加工的一种手段,具有制备微小结构的能力,目前已经成为微细加工领域的研究热点。通过改变高斯分布的激光聚焦位置,进行了Cu薄膜在石英玻璃表面的转印实验,并对转印沉积薄膜进行了光学显微镜、扫描电子显微镜(SEM)和能量弥散X射线(EDX)等分析,探讨了激光散焦距离与沉积薄膜的尺寸、形貌以及厚度均匀性的关系,并在此基础上研究了转印薄膜形貌发生变化的机理。研究结果表明,随着激光光斑离焦距离的增大,转印图形的尺寸先增大后变小,直至消失。转印Cu薄膜的形态从环形或火山形,转变为圆形,并且圆形薄膜的边缘存在大量微小的Cu颗粒。薄膜的转印形式也由开始的液态转印向固态转印演变。
Abstract
As a method of micro fabrication, laser induced forward transfer (LIFT) can be used to make microstructures. Presently, it has become a popular issue on microfabrication process. In this study, a Cu thin film is transferred from one quartz substrate to another quartz substrate by regulating the defocus distance of Gaussian distributed laser beam. The transferred Cu thin film is processed by optical microscope, scanning electron microscope (SEM), and energy dispersive X-ray (EDX) analyzing. Relationship between defocus distance of the laser beam and size, morphology and uniformity of transferred Cu film is discussed. Moreover, mechanism of the morphology transition is analyzed based on the results. The results indicate that with the increase of defocus distance, the size of transferred Cu patterns increase firstly, then decrease, and disappear at last. Morphology of the transferred Cu patterns transforms from crater-shape to plane with many tiny Cu particles at the edge of the patterns. In addition, the transfer form of the thin film changes from liquid transfer to solid transfer.
参考文献

[1] 刘云燕, 程传福, 宋洪胜 等. 激光溅射沉积制备的ZnOGa薄膜表面形貌分析[J]. 光学学报, 2011, 31(1): 0131003

    Liu Yunyan, Cheng Chuanfu, Song Hongsheng et al.. Morphology analysis of ZnOGa thin films deposited by pulsed laser deposition [J]. Acta Optica Sinica, 2011, 31(1): 0131003

[2] 宋晶, 耿永友. 用于蓝光(405 nm)激光直写的聚乙烯醇/银纳米复合材料薄膜的制备[J]. 光学学报, 2012, 32(9): 0931003

    Song Jing, Geng Yongyou. Preparation of polyvinyl alcohol(PVA)/silver(Ag) nanocomposite film applied in laser direct writing of blue ray(405 nm) [J]. Acta Optica Sinica, 2012, 32(9): 0931003

[3] 王俊俏, 张心正, 孙立萍 等. 激光诱导银纳米颗粒薄膜和微结构[J]. 中国激光, 2011, 38(1): 0107001

    Wang Junqiao, Zhang Xinzheng, Sun Liping et al.. Laser-induced deposition of silver nanoparticles films and microstructures onto glass substrates [J]. Chinese J. Lasers, 2011, 38(1): 0107001

[4] 罗乐, 汪毅, 储雅琼 等. 氮气压强对脉冲激光沉积类金刚石薄膜和红外光学特性的影响[J]. 中国激光, 2011, 38(9): 0907001

    Luo Le, Wang Yi, Chu Yaqiong et al.. Influence of the nitrogen pressure on diamond-like carbon film deposited by pulse [J]. Chinese J. Lasers, 2011, 38(9): 0907001

[5] 郑晋翔, 郑晓华, 沈涛 等. 递进式脉冲激光沉积CNx薄膜的组织结构与摩擦学特性[J]. 中国激光, 2012, 39(6): 0607001

    Zheng Jinxiang, Zheng Xiaohua, Shen Tao et al.. Microstructure and triobological behavior of CNx films deposited by iterative pulsed laser deposition [J]. Chinese J. Lasers, 2012, 39(6): 0607001

[6] J. Bohandy, B. F. Kim, F. J. Adrian. Metal deposition from a supported metal film using an excimer laser [J]. J. Appl. Phys., 1986, 60(4): 1538~1539

[7] F. J. Adrian, J. Bohandy, B. F. Kim et al.. A study of the mechanism of metal deposition by the laser-induced forward transfer process [J]. J. Vac. Sci. Technol., 1987, 5(5): 1490~1494

[8] S. Bera, A. J. Sabbah, J. M. Yarbrough et al.. Optimization study of the femtosecond laser-induced forward-transfer process with thin aluminum films [J]. Appl. Opt., 2007, 46(21): 4650~4659

[9] Yang Li, Wang Chingyue, Ni Xiaochang et al.. Aluminum film microdeposition at 775 nm by femtosecond laser-induced forward transfer [J]. Chin. Opt. Lett., 2007, 5(5): 308~310

[10] A. Palla-Papavlu, V. Dinca, C. Luculescu et al.. Laser induced forward transfer of soft materials [J]. J. Opt., 2010, 12(12): 124014

[11] J. Shaw-Stewart, B. Chu, T. Lippert et al.. Improved laser-induced forward transfer of organic semiconductor thin films by reducing the environmental pressure and controlling the substrate-substrate gap width [J]. Appl. Phys. A-Mater., 2011, 105(3): 713~722

[12] B. Hopp, T. Smausz, G. Szabo et al.. Femtosecond laser printing of living cells using absorbing film-assisted laser-induced forward transfer [J]. Opt. Eng., 2012, 51(1): 014302

[13] P. Serra, M. Colina, J. M. Fernandez-pradas et al.. Preparation of functional DNA microarrays through laser-induced forward transfer [J]. Appl. Phys. Lett., 2004, 85(9): 1639~1641

[14] C. Germain, L. Charron, L. Lilge et al.. Electrodes for microfluidic devices produced by laser induced forward transfer [J]. Appl. Surf. Sci., 2007, 253(19): 8328~8333

[15] R. Fardel, M. Nagel, F. Nuesch et al.. Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer [J]. Appl. Phys. Lett., 2007, 91(6): 061103

[16] H. Y. Kuo, S. J. Wang, P. R. Wang et al.. A Sn-based metal substrate technology for the fabrication of vertical-structured GaN-based light-emitting diodes [J]. Appl. Phys. Lett., 2008, 92(2): 021105

[17] K. Bao, X. N. Kang, B. Zhang et al.. Improvement of light extraction from GaN-based thin-film light-emitting diodes by patterning undoped GaN using modified laser lift-off [J]. Appl. Phys. Lett., 2008, 92(14): 141104

[18] J. Shaw-Stewart, T. Lippert, M. Nagel et al.. Sequential printing by laser-induced forward transfer to fabricate a polymer light-emitting diode pixel [J]. ACS Appl. Mater. Inter., 2012, 4(7): 3535~3541

[19] C. Wang, A. S. Holmes. Laser-assisted bumping for flip chip assembly [J]. IEEE T. Electron. Pack., 2001, 24(2): 109~114

[20] A. S. Holmes, S. M. Saidam. Sacrificial layer process with laser-driven release for batch assembly operations [J]. J. Microelectromech. S., 1998, 7(4): 416~422

[21] R. Guerre, U. Drechsler, D. Jubin et al.. Selective transfer technology for microdevice distribution [J]. J. Microelectromech. S., 2008, 17(1): 157~165

[22] R. J. Baseman, N. M. Froberg. Time-resolved transmission of thin gold films during laser blow-off [J]. Appl. Phys. Lett., 1989, 55(18): 1841~1983

[23] R. J. Baseman, N. M. Froberg, J. C. Andreshak et al.. Minimum fluence for laser blow-off of thin gold films at 248 and 532 nm [J]. Appl. Phys. Lett., 1990, 56(15): 1412~1414

[24] N. T. Kattamis, M. S. Brown, C. B. Arnold. Finite element analysis of blister formation in laser-induced forward transfer [J]. J. Mater. Res., 2011, 26(18): 2438~2449

刘威, 窦广彬, 王春青, 田艳红, 叶交托. 高斯分布激光散焦距离对激光转印Cu薄膜形貌影响及机理分析[J]. 中国激光, 2013, 40(5): 0507001. Liu Wei, Dou Guangbin, Wang Chunqing, Tian Yanhong, Ye Jiaotuo. Effect of Defocus Distance on Morphology of Gaussian Distributed Laser Induced Forward Transfer Cu Film and Mechanism Analysis[J]. Chinese Journal of Lasers, 2013, 40(5): 0507001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!