中国激光, 2018, 45 (3): 0307008, 网络出版: 2018-03-06   

光声显微成像技术研究进展及其应用 下载: 2759次特邀综述

Progress and Application of Photoacoustic Microscopy Technique
作者单位
华南师范大学生物光子学研究院激光生命科学研究所暨激光生命科学教育部重点实验室, 广东 广州 510631
引用该论文

陈重江, 杨思华, 邢达. 光声显微成像技术研究进展及其应用[J]. 中国激光, 2018, 45(3): 0307008.

Chen Zhongjiang, Yang Sihua, Xing Da. Progress and Application of Photoacoustic Microscopy Technique[J]. Chinese Journal of Lasers, 2018, 45(3): 0307008.

参考文献

[1] Maslov K, Stoica G, Wang L V. In vivo dark-field reflection-mode photoacoustic microscopy[J]. Optics Letters, 2005, 30(6): 625-627.

[2] Zhang H F, Maslov K, Sivaramakrishnan M, et al. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy[J]. Applied Physics Letters, 2007, 90(5): 053901.

[3] Zhang H F, Maslov K, Stoica G, et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging[J]. Nature Biotechnology, 2006, 24(7): 848-851.

[4] Maslov K, Zhang H F, Hu S, et al. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Optics letters, 2008, 33(9): 929-931.

[5] Zhang C, Maslov K, Wang L V. Subwavelength-resolution label-free photoacoustic microscopy of optical absorptionin vivo[J]. Optics Letters, 2010, 35(19): 3195-3197.

[6] Song L, Maslov K, Wang L V. Multifocal optical-resolution photoacoustic microscopyin vivo[J]. Optics Letters, 2011, 36(7): 1236-1238.

[7] Hu S, Maslov K, Wang L V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed[J]. Optics Letters, 2011, 36(7): 1134-1136.

[8] Yao J, Wang L, Li C, et al. Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging[J]. Physical Review Letters, 2014, 112(1): 014302.

[9] Aguirre J, Schwarz M, Soliman D, et al. Broadband mesoscopic optoacoustic tomography reveals skin layers[J]. Optics Letters, 2014, 39(21): 6297-6300.

[10] Yuan Y, Yang S, Xing D. Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer[J]. Applied Physics Letters, 2012, 100(2): 023702.

[11] Chen Z, Yang S, Xing D. In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy[J]. Optics Letters, 2012, 37(16): 3414-3416.

[12] Li B, Qin H, Yang S, et al. In vivo fast variable focus photoacoustic microscopy using an electrically tunable lens[J]. Optics Express, 2014, 22(17): 20130-20137.

[13] Tan Z, Tang Z, Wu Y, et al. Multimodal subcellular imaging with microcavity photoacoustic transducer[J]. Optics Express, 2011, 19(3): 2426-2431.

[14] Meng J, Liu C, Zheng J, et al. Compressed sensing based virtual-detector photoacoustic microscopy in vivo[J]. Journal of Biomedical Optics, 2014, 19(3): 036003.

[15] Song W, Zheng W, Liu R, et al. Reflection-mode in vivo photoacoustic microscopy with subwavelength lateral resolution[J]. Biomedical Optics Express, 2014, 5(12): 4235-4241.

[16] Wang H, Yang X, Liu Y, et al. Reflection-mode optical-resolution photoacoustic microscopy based on a reflective objective[J]. Optics Express, 2013, 21(20): 24210-24218.

[17] Maslov K, Zhang H F, Wang L V. Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo[J]. Inverse Problems, 2007, 23(6): S113-S122.

[18] Hu S, Maslov K, Wang L V. Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy[J]. Optics Express, 2009, 17(9): 7688-7693.

[19] Hu S, Rao B, Maslov K, et al. Label-free photoacoustic ophthalmic angiography[J]. Optics Letters, 2010, 35(1): 1-3.

[20] Wang L, Maslov K, Wang L V. Single-cell label-free photoacoustic flowoxigraphy in vivo[J]. Proceedings of the National Academy of Sciences, 2013, 110(15): 5759-5764.

[21] Ren H, Brecke K M, Ding Z, et al. Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography[J]. Optics Letters, 2002, 27(6): 409-411.

[22] Zhao Y, Chen Z, Saxer C, et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity[J]. Optics Letters, 2000, 25(2): 114-116.

[23] Wang R K, An L. Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo[J]. Optics Express, 2009, 17(11): 8926-8940.

[24] Wang R K, Hurst S. Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-angiography at 1.3 μm wavelength[J]. Optics Express, 2007, 15(18): 11402-11412.

[25] Cobbold R SC. Foundations of biomedical ultrasound[M]. New York: Oxford University Press, 2007.

[26] Fang H, Maslov K, Wang L V. Photoacoustic Doppler effect from flowing small light-absorbing particles[J]. Physical Review Letters, 2007, 99(18): 184501.

[27] Fang H, Maslov K, Wang L V. Photoacoustic Doppler flow measurement in optically scattering media[J]. Applied Physics Letters, 2007, 91(26): 264103.

[28] Fang H, Wang L V. M-mode photoacoustic particle flow imaging[J]. Optics Letters, 2009, 34(5): 671-673.

[29] Chen S L, Ling T, Huang S W, et al. Photoacoustic correlation spectroscopy and its application to low-speed flow measurement[J]. Optics letters, 2010, 35(8): 1200-1202.

[30] Yao J, Wang L V. Transverse flow imaging based on photoacoustic Doppler bandwidth broadening[J]. Journal of Biomedical Optics, 2010, 15(2): 021304.

[31] Yao J, Maslov K I, Shi Y, et al. In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth[J]. Optics Letters, 2010, 35(9): 1419-1421.

[32] Wang L, Maslov K, Yao J, et al. Fast voice-coil scanning optical-resolution photoacoustic microscopy[J]. Optics Letters, 2011, 36(2): 139-141.

[33] Gao G, Yang S, Xing D. Viscoelasticity imaging of biological tissues with phase-resolved photoacoustic measurement[J]. Optics Letters, 2011, 36(17): 3341-3343.

[34] Zhao Y, Yang S, Chen C, et al. Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement[J]. Optics Letters, 2014, 39(9): 2565-2568.

[35] Chen C, Zhao Y, Yang S, et al. Integrated mechanical and structural features for photoacoustic characterization of atherosclerosis using a quasi-continuous laser[J]. Optics Express, 2015, 23(13): 17309-17315.

[36] Zhao Y, Chen C, Yang S, et al. Mechanical evaluation of lipid accumulation in atherosclerotic tissues by photoacoustic viscoelasticity imaging[J]. Optics Letters, 2016, 41(19): 4522-4525.

[37] Yao J, Wang L V. Photoacoustic microscopy[J]. Laser & Photonics Reviews, 2013, 7(5): 758-778.

[38] Yao D K, Maslov K, Shung K K, et al. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA[J]. Optics Letters, 2010, 35(24): 4139-4141.

[39] Zhang C, Cheng Y J, Chen J, et al. Label-free photoacoustic microscopy of myocardial sheet architecture[J]. Journal of Biomedical Optics, 2012, 17(6): 060506.

[40] Zhang C, Zhang Y S, Yao D K, et al. Label-free photoacoustic microscopy of cytochromes[J]. Journal of Biomedical Optics, 2013, 18(2): 020504.

[41] Yao J, Maslov K I, Zhang Y, et al. Label-free oxygen-metabolic photoacoustic microscopy in vivo[J]. Journal of Biomedical Optics, 2011, 16(7): 076003.

[42] Staley J, Grogan P, Samadi A K, et al. Growth of melanoma brain tumors monitored by photoacoustic microscopy[J]. Journal of Biomedical Optics, 2010, 15(4): 040510.

[43] Wang H W, Chai N, Wang P, et al. Label-free bond-selective imaging by listening to vibrationally excited molecules[J]. Physical Review Letters, 2011, 106(23): 238106.

[44] Yakovlev V V, Zhang H F, Noojin G D, et al. Stimulated Raman photoacoustic imaging[J]. Proceedings of the National Academy of Sciences, 2010, 107(47): 20335-20339.

[45] Jathoul A P, Laufer J, Ogunlade O, et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter[J]. Nature Photonics, 2015, 9(4): 239-246.

[46] Brannon-Peppas L, Blanchette J O. Nanoparticle and targeted systems for cancer therapy[J]. Advanced Drug Delivery Reviews, 2004, 56(11): 1649-1659.

[47] Kim C, Cho E C, Chen J, et al. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages[J]. ACS Nano, 2010, 4(8): 4559-4564.

[48] Cho E C, Kim C, Zhou F, et al. Measuring the optical absorption cross sections of Au-Ag nanocages and au nanorods by photoacoustic imaging[J]. The Journal of Physical Chemistry C, 2009, 113(21): 9023-9028.

[49] Kim J W, Galanzha E I, Shashkov E V, et al. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents[J]. Nature Nanotechnology, 2009, 4(10): 688-694.

[50] Yang X, Skrabalak S E, Li Z Y, et al. Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent[J]. Nano Letters, 2007, 7(12): 3798-3802.

[51] Razansky D, Distel M, Vinegoni C, et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo[J]. Nature Photonics, 2009, 3(7): 412-417.

[52] Zhong J, Yang S, Wen L, et al. Imaging-guided photoacoustic drug release and synergistic chemo-photoacoustic therapy with paclitaxel-containing nanoparticles[J]. Journal of Controlled Release, 2016, 226: 77-87.

[53] Li L, Zemp R J, Lungu G, et al. Photoacoustic imaging of lacZ gene expression in vivo[J]. Journal of Biomedical Optics, 2007, 12(2): 020504.

[54] Yang S, Ye F, Xing D. Intracellular label-free gold nanorods imaging with photoacoustic microscopy[J]. Optics Express, 2012, 20(9): 10370-10375.

[55] Snook K A, Zhao J Z. Alves C H F, et al. Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49(2): 169-176.

[56] Huang S W, Chen S L, Ling T, et al. Low-noise wideband ultrasound detection using polymer microring resonators[J]. Applied Physics Letters, 2008, 92(19): 193509.

[57] Zhang C, Ling T, Chen S L, et al. Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging[J]. ACS Photonics, 2014, 1(11): 1093-1098.

[58] Dong B, Chen S, Zhang Z, et al. Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications[J]. Optics Letters, 2014, 39(15): 4372-4375.

[59] Wang Y, Li C, Wang R K. Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector[J]. Optics Letters, 2011, 36(20): 3975-3977.

[60] Blatter C, Grajciar B, Zou P, et al. Intrasweep phase-sensitive optical coherence tomography for noncontact optical photoacoustic imaging[J]. Optics Letters, 2012, 37(21): 4368-4370.

[61] Rousseau G, Blouin A, Monchalin J P. Non-contact photoacoustic tomography and ultrasonography for tissue imaging[J]. Biomedical Optics Express, 2012, 3(1): 16-25.

[62] Park S J, Eom J, Kim Y H, et al. Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer[J]. Optics Letters, 2014, 39(16): 4903-4906.

[63] Chen Z, Yang S, Wang Y, et al. Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer[J]. Applied Physics Letters, 2015, 106(4): 043701.

[64] Li L, Maslov K, Ku G, et al. Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies[J]. Optics Express, 2009, 17(19): 16450-16455.

[65] Wang Y, Maslov K, Kim C, et al. Integrated photoacoustic and fluorescence confocal microscopy[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(10): 2576-2578.

[66] Zhang X, Zhang H F, Jiao S. Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source[J]. Journal of Biomedical Optics, 2012, 17(3): 030502.

[67] Lin H C A, Chekkoury A, Omar M, et al. . Selective plane illumination optical and optoacoustic microscopy for postembryonic imaging[J]. Laser & Photonics Reviews, 2015, 9(5): L29-L34.

[68] Li L, Dai C, Li Q, et al. Fast subcellular optical coherence photoacoustic microscopy for pigment cell imaging[J]. Optics Letters, 2015, 40(19): 4448-4451.

[69] Chen Z, Yang S, Wang Y, et al. All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector[J]. Optics Letters, 2015, 40(12): 2838-2841.

[70] Chen Z, Yang S, Xing D. Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging[J]. Optics Letters, 2016, 41(7): 1636-1639.

[71] Zhou W, Chen Z, Yang S, et al. Optical biopsy approach to basal cell carcinoma and melanoma based on all-optically integrated photoacoustic and optical coherence tomography[J]. Optics Letters, 2017, 42(11): 2145-2148.

[72] 谢炳凯, 刘少杰, 吴泳波, 等. 全光非接触光声层析及光学相干层析双模成像[J]. 光学学报, 2016, 36(1): 0111001.

    Xie B K, Liu S J, Wu Y B, et al. Dual mode imaging of all-optical non-contact photoacoustic tomography and optical coherence tomography[J]. Acta Optica Sinica, 2016, 36(1): 0111001.

[73] Song W, Xu Q, Zhang Y, et al. Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo[J]. Scientific Rreports, 2016, 6: 32240.

[74] Li M L, Zhang H F, Maslov K, et al. Improved in vivo photoacoustic microscopy based on a virtual-detector concept[J]. Optics Letters, 2006, 31(4): 474-476.

[75] Zhang H F, Maslov K, Wang L V. Automatic algorithm for skin profile detection in photoacoustic microscopy[J]. Journal ofBiomedical Optics, 2009, 14(2): 024050.

[76] Deng Z, Yang X, Gong H, et al. Adaptive synthetic-aperture focusing technique for microvasculature imaging using photoacoustic microscopy[J]. Optics Express, 2012, 20(7): 7555-7563.

[77] Park J, Jeon S, Meng J, et al. Delay-multiply-and-sum-based synthetic aperture focusing in photoacoustic microscopy[J]. Journal of Biomedical Optics, 2016, 21(3): 036010.

[78] Tang H, Tang Z, Wu Y, et al. Differential photoacoustic microscopy technique[J]. Optics Letters, 2013, 38(9): 1503-1505.

[79] Chen J, Lin R, Wang H, et al. Blind-deconvolution optical-resolution photoacoustic microscopy in vivo[J]. Optics Express, 2013, 21(6): 7316-7327.

[80] Liang J, Gao L, Li C, et al. Spatially Fourier-encoded photoacoustic microscopy using a digital micromirror device[J]. Optics Letters, 2014, 39(3): 430-433.

[81] Murray T W, Haltmeier M, Berer T, et al. Super-resolution photoacoustic microscopy using blind structured illumination[J]. Optica, 2017, 4(1): 17-22.

[82] Zhang H F, Maslov K, Wang L V. In vivo imaging of subcutaneous structures using functional photoacoustic microscopy[J]. Nature Protocols, 2007, 2(4): 797-804.

[83] Hu S, Maslov K I, Wang L V. In vivo noninvasive monitoring of microhemodynamics using optical-resolution photoacoustic microscopy[J]. Proceedings of SPIE, 2009, 7177: 71770H.

[84] Yao J, Wang L, Yang J M, et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action[J]. Nature Methods, 2015, 12(5): 407-410.

[85] Stein E W, Maslov K, Wang L V. Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy[J]. Journal of Biomedical Optics, 2009, 14(2): 020502.

[86] Yao J, Maslov K I, Wang L V. In vivo photoacoustic tomography of total blood flow and potential imaging of cancer angiogenesis and hypermetabolism[J]. Technology in Cancer Research & Treatment, 2012, 11(4): 301-307.

[87] Oladipupo S S, Hu S, Santeford A C, et al. Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence[J]. Blood, 2011, 117(15): 4142-4153.

[88] Gutknecht M F, Seaman M E, Ning B, et al. Identification of the S100 fused-type protein hornerin as a regulator of tumor vascularity[J]. Nature Communications, 2017, 8: 552.

[89] Oladipupo S, Hu S, Kovalski J, et al. VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting[J]. Proceedings of the National Academy of Sciences, 2011, 108(32): 13264-13269.

[90] Oh J T, Li M L, Zhang H F, et al. Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy[J]. Journal of Biomedical Optics, 2006, 11(3): 034032.

[91] Wang Y, Xu D, Yang S, et al. Toward in vivo biopsy of melanoma based on photoacoustic and ultrasound dual imaging with an integrated detector[J]. Biomedical Optics Express, 2016, 7(2): 279-286.

[92] Krishnamurthy S, Sneige N, Bedi D G, et al. Role of ultrasound-guided fine-needle aspiration of indeterminate and suspicious axillary lymph nodes in the initial staging of breast carcinoma[J]. Cancer, 2002, 95(5): 982-988.

[93] Troyan S L, Kianzad V. Gibbs-Strauss S L, et al. The FLARE TM intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping [J]. Annals of Surgical Oncology, 2009, 16(10): 2943-2952.

[94] Kim C, Song K H, Gao F, et al. Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats--volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging[J]. Radiology, 2010, 255(2): 442-450.

[95] Pan D, Pramanik M, Senpan A, et al. Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons[J]. Biomaterials, 2010, 31(14): 4088-4093.

[96] Alejandro G U, Erpelding T N, Arie K, et al. Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer[J]. Scientific Reports, 2015, 5: 15748.

[97] Novak J, Georgakoudi I, Wei X, et al. In vivo flow cytometer for real-time detection and quantification of circulating cells[J]. Optics Letters, 2004, 29(1): 77-79.

[98] Zharov V P, Galanzha E I, Shashkov E V, et al. In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents[J]. Optics Letters, 2006, 31(24): 3623-3625.

[99] Galanzha E I, Shashkov E V, Spring P M, et al. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser[J]. Cancer Research, 2009, 69(20): 7926-7934.

[100] He G, Xu D, Qin H, et al. In vivo cell characteristic extraction and identification by photoacoustic flow cytography[J]. Biomedical Optics Express, 2015, 6(10): 3748-3756.

[101] Dong X, Yang S, Ying W, et al. Noninvasive and high-resolving photoacoustic dermoscopy of human skin[J]. Biomedical Optics Express, 2016, 7(6): 2095-2102.

[102] Ma H, Yang S, Cheng Z, et al. Photoacoustic confocal dermoscope with a waterless coupling and impedance matching opto-sono probe[J]. Optics Letters, 2017, 42(12): 2342-2345.

[103] Aguirre J, Schwarz M, Garzorz N, et al. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy[J]. Nature Biomedical Engineering, 2017, 1: 0068.

[104] Wei Q, Liu T, Jiao S, et al. Image chorioretinal vasculature in albino rats using photoacoustic ophthalmoscopy[J]. Journal of Modern Optics, 2011, 58(21): 1997-2001.

[105] Jiao S, Jiang M, Hu J, et al. Photoacoustic ophthalmoscopy for in vivo retinal imaging[J]. Optics Express, 2010, 18(4): 3967-3972.

[106] Silverman R H, Kong F, Chen Y C, et al. High-resolution photoacoustic imaging of ocular tissues[J]. Ultrasound in Medicine & Biology, 2010, 36(5): 733-742.

[107] Tian C, Zhang W, Mordovanakis A, et al. Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography[J]. Optics Express, 2017, 25(14): 15947-15955.

[108] Liu X, Liu T, Wen R, et al. Optical coherence photoacoustic microscopy for in vivo multimodal retinal imaging[J]. Optics Letters, 2015, 40(7): 1370-1373.

[109] Wu N, Ye S, Ren Q, et al. High-resolution dual-modality photoacoustic ocular imaging[J]. Optics Letters, 2014, 39(8): 2451-2454.

[110] Liao L D, Li M L, Lai H Y, et al. Imaging brain hemodynamic changes during rat forepaw electrical stimulation using functional photoacoustic microscopy[J]. Neuroimage, 2010, 52(2): 562-570.

[111] Tsytsarev V, Hu S, Yao J, et al. Photoacoustic microscopy of microvascular responses to cortical electrical stimulation[J]. Journal of Biomedical Optics, 2011, 16(7): 076002.

[112] Matthews T P, Zhang C, Yao D K, et al. Label-free photoacoustic microscopy of peripheral nerves[J]. Journal of Biomedical Optics, 2014, 19(1): 016004.

[113] 曾吕明, 刘国栋, 杨迪武, 等. 基于脉冲激光二极管的小型化光学分辨式光声显微成像系统[J]. 中国激光, 2014, 41(10): 1004001.

    Zeng L M, Liu G D, Yang D W, et al. Compact optical-resolution photoacoustic microscopy system based on a pulsed laser diode[J]. Chinese Journal of Lasers, 2014, 41(10): 1004001.

[114] Park K, Kim J Y, Lee C, et al. Handheld photoacoustic microscopy probe[J]. Scientific Reports, 2017, 7: 13359.

[115] Lai P, Wang L, Tay J W, et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J]. Nature Photonics, 2015, 9(2): 126-132.

[116] Conkey D B. Caravaca-Aguirre A M, Dove J D, et al. Super-resolution photoacoustic imaging through a scattering wall[J]. Nature Communications, 2015, 6: 7902.

[117] Deán-Ben X L, Estrada H, Ozbek A, et al. . Influence of the absorber dimensions on wavefront shaping based on volumetric optoacoustic feedback[J]. Optics Letters, 2015, 40(22): 5395-5398.

陈重江, 杨思华, 邢达. 光声显微成像技术研究进展及其应用[J]. 中国激光, 2018, 45(3): 0307008. Chen Zhongjiang, Yang Sihua, Xing Da. Progress and Application of Photoacoustic Microscopy Technique[J]. Chinese Journal of Lasers, 2018, 45(3): 0307008.

本文已被 14 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!