Author Affiliations
Abstract
1 MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
2 Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
3 Department of Ophthalmology and Optometry, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350004, China
We present for the first time, to the best of our knowledge, a needle probe for photoacoustic viscoelasticity (PAVE) measurements at a depth of 1 cm below the sample surface. The probe uses a gradient index rod lens, encased within a side-facing needle (0.7 mm outer diameter), to direct excitation light (532 nm) and detection light (1325 nm) focused on the sample, collecting and directing the returned detection light in a spectral domain low coherence interferometry system, which allows for obtaining optical phase differences due to photoacoustic oscillations. The feasibility of needle probe for PAVE depth characterization was investigated on gelatin phantoms and in vitro biological tissues. The experimental results in an in vivo animal model predict the great potential of this technique for in vivo tumor boundary detection.
needle probe photoacoustic viscoelasticity measurement depth-resolved mechanical phase delay mechanical interface 
Chinese Optics Letters
2022, 20(8): 081701
作者单位
摘要
福建医科大学医学技术与工程学院,福建 福州 350004

光声成像技术是一种非入侵式和非电离式的新型生物医学成像方法,它有效结合了声学成像和光学成像的优势,可得到高分辨率和高对比度的生物组织结构及功能图像,为疾病的早期诊断及评估等提供重要依据。然而,任何单一的成像技术在具备其独特成像优点的同时都不可避免存在一定的局限性。将光声成像与其他成像技术如光学相干层析成像、超声成像等成像技术相结合形成多模态成像系统,可以实现各成像技术的优势互补,使其具有更好的成像深度和空间分辨率,提供更加全面的生物组织信息。多模态光声成像技术已经应用到了各种疾病的诊断与治疗中,其在眼科学中的应用潜力也正在被人们发掘,多模态光声眼部成像不仅可以提供眼部解剖学信息,而且可以提供一定的功能信息。在一些眼部疾病发生发展过程中会伴随着一些参数指标的改变,如血氧饱和度、氧代谢率、分子标志物等,通过实时定量测量眼内相关参数变化,可以早期精准监测和诊断眼部疾病。概述了多模态光声成像技术及其在眼科学中的应用研究进展情况,并尝试对其未来发展情况进行了探讨。

医用光学 光声成像 多模态 眼科学 分子成像 
激光与光电子学进展
2022, 59(6): 0617014
作者单位
摘要
华南师范大学生物光子学研究院激光生命科学研究所暨激光生命科学教育部重点实验室, 广东 广州 510631
在临床应用中, 许多患处血液流速的测量都需要在无菌操作下进行。而传统的基于超声换能器实现的光声流速测量方式都需要在检测区域与探头之间填充超声耦合介质, 从而无法实现无菌操作, 限制了这种检测方式在临床上的应用。本文报道了一种非接触式光声多普勒流速仪, 利用低相干的麦克尔逊干涉仪探测光声信号实现了流速测量。与超声探头为探测装置的光声多普勒血流仪相比, 该方法可以实现非接触式的光声流速测量。在模拟血液样品实验中, 定量的测量了横向流速, 其速度范围在0.2-3 mm/s, 同时获得了截面流速图像。另外, 活体小鼠耳部流速图像证明了该方法可以非接触、定量的测量血流信息。
光声成像 流速测量 多普勒频带展宽 非接触 photoacoustic imaging velocimetry doppler bandwidth broadening noncontact 
激光生物学报
2018, 27(4): 338
作者单位
摘要
1 广州工商学院电子信息工程系, 广东 佛山 528138
2 华南师范大学, 生物光子学研究院激光生命科学研究所、暨激光生命科学教育部重点实验室, 广东 广州 510631
本文提出了一种新型的全光学光声/OCT双模态成像系统。该系统利用同一个低相干迈克尔逊干涉仪即可实现非接触式光声成像和OCT于一体,系统装置结构简单,可同时获取生物组织的吸收与散射结构信息。通过模拟实验证明了该双模态成像系统的可行性及成像能力,并对活体小鼠耳朵同时进行光声/OCT成像测试,实验结果表明非接触式光声/OCT双模态成像系统可以实现生物组织内的微血管及散射结构的高分辨率成像。进一步地,我们将光声/OCT双模态成像系统应用于基底细胞癌的检测中,获得了初步的研究结果,表明了该系统在皮肤肿瘤诊断中的具有潜在的应用价值。
光声成像 光学相干层析成像 双模态成像 基底细胞癌 hotoacoustic imaging optical coherence tomography dual-mode imaging basal cell carcinoma 
激光生物学报
2018, 27(3): 218
作者单位
摘要
华南师范大学生物光子学研究院激光生命科学研究所暨激光生命科学教育部重点实验室, 广东 广州 510631
光声显微成像技术是近年发展迅速的一种基于光学吸收差异的成像技术,它继承了光学成像对比度高、超声成像深度深的优点,表现出纯光学显微成像技术所无法比拟的优越性。光声显微成像实现了从声学分辨率至光学分辨率的多尺度成像,发展出从单纯的吸收结构到功能的多参量成像、从依靠内源吸收体到外源对比剂的多对比度成像、从依赖超声换能器到全光学激发与探测、从单一吸收成像到与光学相干层析成像、荧光成像、双光子成像、二次谐波成像等结合形成多模态的光声显微成像技术。现已在血管生物学、肿瘤学、神经学、眼科学,以及皮肤学等生物医学领域得到应用。
医用光学 光声成像 光声显微成像 多尺度光声成像 多参量光声成像 多模态光声成像 生物医学 
中国激光
2018, 45(3): 0307008
作者单位
摘要
华南师范大学生物光子学研究院激光生命科学研究所、暨激光生命科学教育部重点实验室, 广东 广州 510631
报道了一种非接触、宽频带、联合微型激光器和低相干迈克尔逊干涉仪的全光学光声显微镜(BD-AO-PAM)、光学相干层析系统(OCT)的硬件用于光声信号的检测。目前全光学光声显微镜可检测到的带宽为67 MHz, 用碳纤维测得系统的横向分辨率可以达到10.8 μm。进一步的, 利用包埋头发丝的模拟样品和在体小鼠耳朵血管来验证系统的成像能力。实验结果表明, 这种全光学光声显微镜可以在体的实现组织高分辨率的成像, 有望成为一种便携式非接触的光声显微镜应用于生物医学当中。
非接触 全光学光声显微镜 生物医学应用 non-contact all-optical photoacoustic microscopy biomedical applications 
激光生物学报
2016, 25(6): 509
Author Affiliations
Abstract
1 Department of Orthopaedics, the First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
2 MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
Early detection and timely treatment of nerve injury is crucial for the repair of nerve function. One week following a crush injury, heat shock protein 27 (HSP27) is over-expressed along the entire length of the sciatic nerve. Herein, we present an approach to detect injured nerves by photoacoustic microscopy after labeling the injured nerve with HSP27 antibody-conjugated gold nanoparticles. The studies reveal that nanoprobe administration enabled the detection of injured nerves by photoacoustic microscopy, especially during the early stages within 3–7 days post injury. In conclusion, photoacoustic microscopy combined with antibody-conjugated nanoparticles holds potential for the early detection of nerve injury.
170.0170 Medical optics and biotechnology 170.3880 Medical and biological imaging 170.5120 Photoacoustic imaging 
Chinese Optics Letters
2015, 13(11): 111701

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!