光学 精密工程, 2017, 25 (12): 3048, 网络出版: 2018-01-10  

Parylene增强型声表面波传感器及其温度响应

Parylene-enhanced SAW sensor and its temperature response
作者单位
1 中国科学院 苏州生物医学工程技术研究所,江苏 苏州 215163
2 中国科学院大学 材料科学与光电技术学院, 北京 100049
3 西北工业大学 材料科学与工程学院, 陕西 西安 710072
摘要
针对声表面波(SAW)传感器对品质因数、寿命和成本的要求,研制了Parylene增强型SAW传感器。根据金属剥离工艺要求,利用LOR剥离胶和AZ5214光刻胶双层胶旋涂工艺制作了梯形结构;在传统光学光刻条件下制作了2 μm的超细叉指电极。传感器制作过程利用了MEMS工艺,不仅实现了传感器的微型化,还可以批量化生产,得到的以石英为基底的传感器谐振频率达到249.077 953 MHz。最后在传感器的表面镀制Parylene聚合物薄膜以提高基底温度灵敏度。实验对比了未增强型(未镀Parylene)和增强型SAW传感器 (镀Parylene)的温度灵敏度。结果显示:未增强型SAW传感器温度灵敏度为2.048 kHz/℃,Parylene增强型SAW传感器温度灵敏度为2.855 kHz/℃,比前者提高了0.807 kHz/℃,且镀Parylene之后谐振频率变化量与温度具有较好的线性度,线性相关系数达到0.996 15。实验证明,Parlene增强型SAW传感器的性能优于未增强的SAW传感器。
Abstract
According to the requirement of Surface Acoustic Wave (SAW) sensors for quality factors, long life and low costs, a Parylene enhanced SAW sensor was developed. In consideration of metal stripping process, the LOR stripping rubber and AZ5214 double-layer spin-coating process were used to produce a trapezoidal structure, and the traditional optical lithography was used to fabricate a 2 μm superfine fork finger electrode. By utilizing MEMS technology, the sensor implements the miniaturization, but also the quantified production. The obtained quartz -based sensor shows its resonant frequency to be 249.077 953 MHz. Finally, a Parylene polymer film was coated on the surface of the sensor to increase the temperature sensitivity of the substrate. The temperature sensitivities of unenhanced SAW sensor (uncoated parylene) and enhanced SAW sensor (coated parylene) were compared experimentally. The results indicate that the temperature sensitivity of the former is 2.048 kHz/℃ and that of the latter is 2.855 kHz/℃, which is higher 0.80 kHz /℃ than that of the former. Moreover, the resonant frequency offset and the temperature of the Parylene-enhanced SAW sensor show an excellent linearity, and the linear correlation coefficient reaches to 0.99615. These experiments demonstrate that performance of Parylene-enhanced SAW sensors is superior to that of the unenhanced SAW sensors.
参考文献

[1] 孔慧, 李传宇, 周连群, 等. 薄膜谐振Lamb波传感器测量液体流速矢量的方法[J]. 光学 精密工程, 2017, 25(1):155-162.

    KONG H, LI CH Y, ZHOU L Q, et al.. A method for fluid velocity vector measurement using thin film Lamb wave resonator[J]. Opt. Precision Eng., 2017, 25(1): 155-162.(in Chinese)

[2] DEVKOTA J, OHODNICKI P R, GREVE D W. SAW sensors for chemical vapors and gases[J]. Sensors, 2017, 17(4): 801.

[3] FU Y Q, LUO J K, DU X Y, et al.. Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review[J]. Sensors and Actuators B: Chemical, 2010, 143(2): 606-619.

[4] FU Y Q, GARCIA-GANCEDO L, PANG H F, et al.. Microfluidics based on ZnO/nanocrystalline diamond surface acoustic wave devices[J]. Biomicrofluidics, 2012, 6(2): 024105.

[5] LUO J K, FU Y Q, ASHLEY G, et al.. Integrated ZnO film based acoustic wave microfluidics and biosensors[J]. Advances in Science and Technology, 2011, 67: 49-58.

[6] 张静端. 一种用于图书档案库的小波加权式声表面波温度传感器的关键问题研究[J]. 电子学报, 2016, 44(5): 1162-1167.

    ZHANG J D. Study of a wavelet weighting surface acoustic wave temperature sensor applied in library and archives[J]. Acta Electronica Sinica, 2016, 44(5):1162-1167.(in Chinese)

[7] 李聪明, 罗怡, 周传鹏, 等. 微热管红外测温系统的设计[J]. 光学 精密工程, 2016, 34(10): 2449-2455.

    LI C M, LUO Y, ZHOU CH P, et al.. Design of infrared temperature measurement system for micro heat pipe[J]. Opt. Precision Eng., 2016, 34(10): 2449-2455.(in Chinese)

[8] 林卓彬. 声表面波温度传感器特性研究[D]. 长春: 吉林大学, 2010.

    LIN ZH B. Research of Characteristics on Surface Acoustic Wave Temperature Sensor[D]. Changchun: Jilin University, 2010.(in Chinese)

[9] 陈裕泉. SAW温度传感器的设计和研制[J]. 仪表技术与传感器, 1992(2): 13-15.

    CHEN Y Q. Investigation and design of SAW temperature sensor[J]. Instrument Technique and Sensor, 1992(2): 13-15.(in Chinese)

[10] 吴展翔, 刘文, 卢小荣. 声表面波温度传感器的仿真与设计[J]. 压电与声光, 2014, 36(1): 8-11.

    WU ZH X, LIU W, LU X R. Simulation and design of SAW temperature sensor[J]. Piezoelectrics & Acoustooptics, 2014, 36(1): 8-11.(in Chinese)

[11] KRYSHTAL R G, KUNDIN A P, MEDVED A V. Devices based on surface acoustic waves for temperature sensors[J]. Journal of Communications Technology and Electronics, 2017, 62(3): 282-288.

[12] TANG Y L, LI ZH J, MA J Y, et al.. Highly sensitive room-temperature surface acoustic wave (SAW) ammonia sensors based on Co3O4/SiO2 composite films[J]. Journal of Hazardous Materials, 2014, 280: 127-133.

[13] DJOUMI L, BLONDEAU-PATISSIER V, VANOTTI M, et al.. Surface acoustic wave sensors for PM2.5 and PM10 concentration[J]. Procedia Engineering, 2016, 168: 696-699.

[14] BROOKES J, BUFACCHI R, KONDOH J, et al.. Determining biosensing modes in SH-SAW device using 3D finite element analysis[J]. Sensors and Actuators B: Chemical, 2016, 234: 412-419.

[15] 周剑, 何兴理, 金浩, 等. 基于ZnO压电薄膜的柔性声表面波器件[J]. 光学 精密工程, 2014, 22(2): 346-350.

    ZHOU J, HE X L, JIN H, et al.. Flexible ZnO thin film SAW device on polyimide substrate[J]. Opt. Precision Eng., 2014, 22(2): 346-350. (in Chinese)

[16] MAO F, LINDEBERG M, HJORT K, et al.. A polymer foil non-contact IR temperature sensor with a thermoresistor integrated on the back of a vertically configured thermopile[J]. Sensors and Actuators A: Physical, 2012, 179: 56-61.

[17] 陈德鹅, 吴志明, 李伟, 等. 图形反转工艺用于金属层剥离的研究[J]. 半导体技术, 2009, 34(6): 535-538.

    CHEN D E, WU ZH M, LI W, et al.. Image reverse technique for research of metal lift-off[J]. Semiconductor Technology, 2009, 34(6): 535-538.(in Chinese)

[18] WU H Y, ZU H F, WANG Q M, et al.. Monitoring the adhesion process of tendon stem cells using shear-horizontal surface acoustic wave sensors[C]. 2015 Joint Conference of the IEEE Frequency Control Symposium & the European Frequency and Time Forum, IEEE, 2015: 310-315.

[19] 潘峰. 声表面波材料与器件[M]. 北京: 科学出版社, 2012.

    PAN F. Surface Acoustic Wave Materials and Devices[M]. Beijing: Science Press, 2012 (in Chinese)

[20] 田爽, 郝淑娟, 赵军发, 等. 带有温度检测的声表面波气体传感器[J]. 南开大学学报:自然科学版, 2011, 44(2): 27-31.

    TIAN SH, HAO SH J, ZHAO J F, et al.. The surface acoustic wave gas sensor with temperature detection[J]. Acta Scientiarum Naturalium Univeratatis Nankaiensis:Science and Technology, 2011, 44(2): 27-31.(in Chinese)

李敬, 潘海曦, 郭振, 李传宇, 姚佳, 周连群. Parylene增强型声表面波传感器及其温度响应[J]. 光学 精密工程, 2017, 25(12): 3048. LI Jing, PAN Hai-xi, GUO Zhen, LI Chuan-yu, YAO Jia, ZHOU Lian-qun. Parylene-enhanced SAW sensor and its temperature response[J]. Optics and Precision Engineering, 2017, 25(12): 3048.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!