人工晶体学报, 2020, 49 (4): 677, 网络出版: 2020-06-15  

不同表面活性剂制备n型Bi2Te3热电材料

Preparation of n-type Bi2Te3 Thermoelectric Materials by Different Surfactants
作者单位
东华大学材料科学与工程学院,纤维材料改性国家重点实验室,上海 201620
摘要
分别使用P123(聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物)、PVP(聚乙烯吡咯烷酮)和EDTA(乙二胺四乙酸)为模板剂采用水热法合成n型Bi2Te3热电纳米粉体,通过放电等离子烧结技术(简称SPS)将粉体烧结成块体样品。利用XRD、SEM、ZEM-3以及激光导热仪等对制备的样品进行物相、形貌及热电性能表征。结果显示:三种模板剂制备的Bi2Te3纳米颗粒大部分呈片状,其中PVP制备的纳米片最为规整,EDTA制备的纳米片大小不均一,P123制备的纳米片夹杂有棒状和团聚饼状的形貌;XRD表征显示所制备粉体均为纯Bi2Te3相,没有其它杂质。对块体样品的热电性能研究发现:由于Bi2Te3具有独特的层状结构,会对载流子和声子的传输产生影响,造成所制备块体样品垂直于压力方向的ZT值要大于平行于压力方向的ZT值;采用PVP模板剂制备Bi2Te3样品的热电性能最高,在温度为480 K时,ZT值达到0.33。
Abstract
N-type Bi2Te3 nano-powders were prepared by hydrothermal method, using [P123(polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer), PVP (polyvinylpyrrolidone), and EDTA (ethylene diamine tetraacetic acid)] as template agents. Moreover, the n-type Bi2Te3thermoelectric bulk samples were prepared by Spark Plasma Sintering technology (SPS). The phase, morphology and thermoelectric properties of the prepared samples were characterized by XRD, SEM, ZEM-3 and laser thermal conductivity. The results show that most of the Bi2Te3 nanoparticles prepared by the three template agents are flake-shaped. Among them, the PVP-made nanosheets are the most regular, the EDTA-made nanosheets are not uniform in size, and the P123-made nanosheets are mixed with rod-like and agglomerated spherical shapes; XRD patterns show that the as-prepared nano-powders are all pure Bi2Te3 phase without other impurities. The research on the thermoelectric properties of bulk samples found that:due to the unique layered structure of Bi2Te3, which would affect the carrier and phonon transmission, the ZT value of the prepared bulk sample perpendicular to the pressure direction was larger than that parallel to the pressure direction. The Bi2Te3 sample prepared by the PVP template presented the best thermoelectric performance and the ZT value reached 0.33 at a temperature of 480 K.
参考文献

[1] Daybell M, Steyert W. Localized magnetic impurity states in metals:some experimental relationships[J].Reviews of Modern Physics,1968,40(2):380.

[2] Foos E E, Stroud R M. Synthesis and characterization of nanocrystalline bismuth telluride[J].Nano Letters,2001,1(12):693-695.

[3] Zhu T, Liu Y. Compromise and synergy in high-efficiency thermoelectric materials[J].Advanced Materials,2017,29(14):1605884.

[4] Duan X K, Hu K G, Ma D H, et al. Microstructure and thermoelectric properties of Bi0.5Na0.02Sb1.48-xInxTe3 alloys fabricated by vacuum melting and hot pressing[J].Rare Metals,2015,34(11):770-775.

[5] Liu J, Zhang H B. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J].Advanced Materials,2017,29(38):1702367.

[6] Chen X, Liu X, Huang K. Large-scale synthesis of size-controllable Ag nanoparticles by reducing silver halide colloids with different sizes[J].Chinese Chemical Letters,2019,30(3):797-800.

[7] Lu X, Zheng Q, Gu S, et al. Enhanced TE properties of Cu@Ag/Bi2Te3 nanocomposites by decoupling electrical and thermal properties[J].Chinese Chemical Letters,2019,DOI:10.1016/j.cclet.2019.07.034.

[8] Zhou Y, Zhou Y, Pang Q, et al. The opposite thermoelectric properties and composite enhancement of Ag-doped Cu2SnSe3[J].Journal of Inorganic Materials,2019,34(3):301-309.

[9] Peng L, Xiao L N, Ye T, et al. Fabrication and planar cooling performance of flexible Bi0.5Sb1.5Te3/epoxy composite thermoelectric films[J].Journal of Inorgnal Material,2019,34(6):679-684.

[10] Poudel B, Minnich A, Wang D, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J].Science.2008,320(5876):634-638.

[11] Han M K, Jin Y. Thermoelectric properties of Bi2Te3:CuI and the effect of its doping with Pb atoms[J].Materials.2017,10(11):1235.

[12] Ambrosi A, Sofer Z, Luxa J, et al. Exfoliation of layered topological insulators Bi2Se3 and Bi2Te3 via electrochemistry[J].ACS Nano.,2016,10(12):11442.

[13] Wiese J. Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys[J].Journal of Physics and Chemistry of Solids,1960,15(1-2):13-16.

[14] Zhu T, Liu Y. Compromise and synergy in high-efficiency thermoelectric materials[J].Advanced Materials,2017,29(14):1605884.

[15] Yuan J, Zhao M, Yu W, et al. Raman spectroscopy of two-dimensional Bi2TexSe3-x platelets produced by solvothermal method[J].Materials,2015,8(8):5007.

[16] Li D, Qin X, Zhang J, et al.Thermoelectric anisotropy of n-type Bi2Te3-xSex prepared by spark plasma sintering[J].RSC Advances,2015,5(54):43717-22.

[17] Park K C, Dharmaiah P, Kim H S, et al. Investigation of microstructure and thermoelectric properties at different positions of large diameter pellets of Bi0.5Sb1.5Te3 compound[J].Journal of Alloys & Compounds,2017,692:573-582.

[18] Purkayastha A, Kim S, Gandhi D D, et al. Molecularly protected bismuth telluride nanoparticles:microemulsion synthesis and thermoelectric transport properties[J].Advanced Materials,2006,18(22):2958-2963.

[19] Scheele M, Oeschler N, Meier K, et al. Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles[J].Advanced Functional Materials,2009,19(21):3476.

[20] Zhang Y, Xu G, Ren P, et al. Effects of various reductants and surfactants on the nanostructure of Bi2Te3 synthesized by a hydrothermal process[J].Journal of Electronic Materials,2011,40(5):835.

[21] Dharmaiah P, Hong S J. Thermoelectric properties of Bi2Te3 nanocrystals with diverse morphologies obtained via modified hydrothermal method[J].Journal of Electronic Materials,2017,46(5):3012-3019.

[22] Deng Y, Zhou X S, Wei G D, et al. Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology[J].Journal of Physics and Chemistry of Solids,2002,63(11):2119-2121.

[23] Saleemi M, Toprak M S, Li S, et al. Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3)[J].Journal of Materials Chemistry,2012,22(2):725-730.

[24] Zhao X, Ji X, Zhang Y, et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites[J].Applied Physics Letters,2005,86(6):062111.

[25] Dharmaiah P, Hong S J. Thermoelectric properties of Bi2Te3 nanocrystals with diverse morphologies obtained via modified hydrothermal method[J].Journal of Electronic Materials,2017,46(5):3012-3019.

[26] Mills K C. Thermodynamic data for inorganic sulphides, selenides and tellurides[J].Geochimica Et Cosmochimica Acta,1974,39(5):773-774.

[27] Rowe D M. Thermoelectrics handbook:macro to nano[M].The U.S.A: Taylor & Francis Group,2006:8.

[28] Vasil'ev A, Yaprintsev M, Ivanov O, et al. Anisotropic thermoelectric properties of Bi1.9Lu0.1Te2.7Se0.3 textured via spark plasma sintering[J].Solid State Sciences,2018,84:28-43.

[29] Agarwal K, Varandani D, Mehta B R. Simultaneous improvement in electron transport and phonon scattering properties in Bi2Te3∶Si nanocomposite thin films: role of a conducting secondary phase[J].Journal of Alloys & Compounds,2017,698:1058-1065.

时晓磊, 陆晓芳, 苏莉, 顾士甲, 周蓓莹, 王连军, 江莞. 不同表面活性剂制备n型Bi2Te3热电材料[J]. 人工晶体学报, 2020, 49(4): 677. SHI Xiaolei, LU Xiaofang, SU Li, GU Shijia, ZHOU Beiying, WANG Lianjun, JIANG Wan. Preparation of n-type Bi2Te3 Thermoelectric Materials by Different Surfactants[J]. Journal of Synthetic Crystals, 2020, 49(4): 677.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!