人工晶体学报, 2020, 49 (4): 672, 网络出版: 2020-06-15  

不同元素掺杂MoS2对CO催化氧化的计算研究

Calculation of the Catalytic Oxidation of CO by MoS2 Doped with Different Elements
作者单位
1 六盘水师范学院化学与材料工程学院,六盘水 553004
2 贵州大学化学与化工学院,贵阳 550025
摘要
基于密度泛函理论,采用了Dmol3模块对几种不同元素(Fe、Ni、Cu、Zn、Pd和Si)掺杂MoS2所形成的单原子催化剂的性能进行了第一性原理计算。首先分析了掺杂元素与载体之间的结合强度,发现Fe、Ni和Si与MoS2具有良好的结合稳定性。另外,分析了几种X-MoS2对CO催化氧化的性能,计算比较了对CO和O2的吸附能,遵循顺序如下:Pd<Cu<Ni<Fe<Si。其中,Si-MoS2表现出了优异的催化性质,对O2的吸附能最大且明显高于CO。通过E-R机理分析表明,这将有利于O2在催化活性位点被高效活化,保证下一步CO氧化反应的进行。通过局域态密度分析,与CO相比,在费米能级附近Si和O2产生的相互作用明显更强,其对O2的吸附作用也更强。Si掺杂MoS2具有成为CO氧化反应催化剂的潜力。
Abstract
Based on the density functional theory, the first-principle calculation of the performance of single atom catalysts, MoS2 doped with several different elements (Fe, Ni, Cu, Zn, Pd and Si), was carried out by the Dmol3 module. Firstly, the bonding strength between the doped elements and the support was analyzed. It was found that Fe, Ni and Si have good bonding stability with MoS2. In addition, the performance of several X-MoS2 catalysts for CO oxidation was analyzed, and the adsorption energy of CO and O2 were calculated and compared. The following order was followed:Pd
参考文献

[1] Miller D, Sanchez Casalongue H, Bluhm H, et al. Different reactivity of the various platinum oxides and chemisorbed oxygen in CO oxidation on Pt (111)[J].Journal of the American Chemical Society,2014,136(17):6340-6347.

[2] Wang W, Cao Z, Liu K, et al. Ligand-assisted, one-pot synthesis of Rh-on-Cu nanoscale sea urchins with high-density interfaces for boosting CO oxidation[J].Nano letters,2017,17(12):7613-7619.

[3] Darby M, Stamatakis M, Michaelides A, et al. Lonely atoms with special gifts:breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys[J].The Journal of Physical Chemistry Letters,2018,9(18):5636-5646.

[4] Gao G, Jiao Y, Waclawik E, et al. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide[J].Journal of the American Chemical Society,2016,138(19):6292-6297.

[5] Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J].Nature Chemistry,2011,3(8):634-641.

[6] Esrafili M, Nematollahi P, Abdollahpour H. A comparative DFT study on the CO oxidation reaction over Al-and Ge-embedded graphene as efficient metal-free catalysts[J].Applied Surface Science,2016,378:418-425.

[7] Feng L, Liu Y, Zhao J. Fe- and Co-P4-embedded graphenes as electrocatalysts for the oxygen reduction reaction:theoretical insights[J].Physical Chemistry Chemical Physics,2015,17(45):30687-30694.

[8] Deepak F, Esparza R, Borges B, et al. Direct imaging and identification of individual dopant atoms in MoS2 and WS2 catalysts by aberration corrected scanning transmission electron microscopy[J].ACS Catalysis,2011,1(5):537-543.

[9] Tan C, Cao X, Wu X, et al. Recent advances in ultrathin two-dimensional nanomaterials[J].Chemical Reviews,2017,117(9):6225-6331.

[10] Mahmood J, Lee E, Jung M, et al. Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state[J].Proceedings of the National Academy of Sciences,2016,113(27):7414-7419.

[11] Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2[J].Nano Letters,2010,10(4):1271-1275.

[12] Mak K, Lee C, Hone J, et al. Atomically thin MoS2:a new direct-gap semiconductor[J].Physical Review Letters,2010,105(13):136805.

[13] Wang T, Gao D, Zhuo J, et al. Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 particles[J].Chemistry-A European Journal,2013,19(36):11939-11948.

[14] Zhu J, Zhang H, Tong Y, et al. First-principles investigations of metal (V, Nb, Ta)-doped monolayer MoS2:structural stability, electronic properties and adsorption of gas molecules[J].Applied Surface Science,2017,419:522-530.

[15] Li D, Li W, Zhang J. Al doped MoS2 monolayer:a promising low-cost single atom catalyst for CO oxidation[J].Applied Surface Science,2019,484:1297-1303.

[16] 陈 令,王景芹,朱艳彩,等.La-W共掺杂对AgSnO2触头材料热性能影响的仿真分析[J].人工晶体学报,2019,48(11):2056-2061.

[17] 董海宽,杨子龙,关众博,等.基于密度泛函理论研究掺杂石墨烯对CO分子吸附性能[J].人工晶体学报,2018,47(5):1024-1029.

[18] Komsa H, Kotakoski J, Kurasch S, et al. Two-dimensional transition metal dichalcogenides under electron irradiation:defect production and doping[J].Physical Review Letters,2012,109(3):035503.

[19] Pyykk P, Atsumi M. Molecular single-bond covalent radii for elements 1-118[J].Chemistry-A European Journal,2009,15(1):186-197.

王克良, 李静, 黄禹, 连明磊, 范佳鑫. 不同元素掺杂MoS2对CO催化氧化的计算研究[J]. 人工晶体学报, 2020, 49(4): 672. WANG Keliang, LI Jing, HUANG Yu, LIAN Minglei, FAN Jiaxin. Calculation of the Catalytic Oxidation of CO by MoS2 Doped with Different Elements[J]. Journal of Synthetic Crystals, 2020, 49(4): 672.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!