光电工程, 2019, 46 (3): 1, 网络出版: 2019-04-07  

面向产业化应用的双光束超分辨数据存储技术

Industrialization oriented technology of dual-beam super-resolution data storage
作者单位
1 华中科技大学武汉光电国家研究中心,湖北 武汉 430074
2 华中科技大学信息存储系统教育部重点实验室,湖北 武汉 430074
3 深圳华中科技大学研究院,广东 深圳 518057
摘要
光学数据存储技术虽然在存储寿命和功耗上具有显著优势,但在应对大数据纵深发展趋势时,目前的一些光存储技术在容量和密度方面面临严峻的挑战。相比于其他光存储技术,双光束超分辨光学数据存储技术在光学大数据存储产业化方面展现了明显的容量和密度优势。本文针对双光束超分辨光存储技术,全面介绍了该技术在光存储技术产业化应用中亟待解决的核心关键问题,并着重讨论了解决这些问题所需要采用的基本方法。
Abstract
Though optical data storage technology has attractive potential because of its long storage lifetime and low energy consumption, current optical data storage technologies are challenged by their capacity and dentistry for big data application. Dual-beam super-resolution optical data storage technology exhibits obvious advantage in ultra-high capacity and density due to the overcoming of optical diffraction limit. This work illuminates the key problems in the industrialization of dual-beam super-resolution optical data storage technology, and discusses some basic solutions to these obstacles.
参考文献

[1] Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061.

[2] Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 2009, 3(3): 144–147.

[3] Li L J, Gattass R R, Gershgoren E, et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 2009, 324(5929): 910–913.

[4] Andrew T L, Tsai H Y, Menon R. Confining light to deep subwavelength dimensions to enable optical nanopatterning[J]. Science, 2009, 324(5929): 917–921.

[5] Scott T F, Kowalski B A, Sullivan A C, et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science, 2009, 324(5929): 913–917.

[6] Stocker M P, Li L J, Gattass R R, et al. Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time[J]. Nature Chemistry, 2011, 3(3): 223–227.

[7] Cao Y Y, Gan Z S, Jia B H, et al. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization[J]. Optics Express, 2011, 19(20): 19486–19494.

[8] Fischer J, Von Freymann G, Wegener M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography[J]. Advanced Materials, 2010, 22(32): 3578–3582.

[9] Harke B, Dallari W, Grancini G, et al. Polymerization inhibition by triplet state absorption for nanoscale lithography[J]. Advanced Materials, 2013, 25(6): 904–909.

[10] Wollhofen R, Katzmann J, Hrelescu C, et al. 120 nm resolution and 55 nm structure size in STED-lithography[J]. Optics Express, 2013, 21(9): 10831–10840.

[11] 刘铁诚, 张力, 孙静, 等. 二芳基乙烯的光学性质及其在超分辨光存储中的应用[J]. 中国激光, 2018, 45(9): 0903001.

    Liu T C, Zhang L, Sun J, et al. Optical properties of dithienylethene and its applications in super-resolution optical storage[J]. Chinese Journal of Lasers, 2018, 45(9): 0903001.

[12] G ttfert F, Wurm C A, Mueller V, et al. Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution[J]. Biophysical Journal, 2013, 105(1): L01–L03.

[13] Hell S, Jakobs S, Andresen M, et al. Method and apparatus for storing a three-dimensional arrangement of data bits in a solid-state body: 20070047287[P]. 2007-03-01.

[14] Polyakova S M, Belov V N, Bossi M L, et al. Synthesis of photochromic compounds for aqueous solutions and focusable light[J]. European Journal of Organic Chemistry, 2011, 2011(18): 3301–3312.

[15] Gan Z S, Evans R A, Gu M. Far-field super-resolution recording and reading towards petabyte optical discs[C]//Frontiers in Optics 2016, Rochester, New York United States, 2016.

[16] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780–782.

[17] Nielson R, Kaehr B, Shear J B. Microreplication and design of biological architectures using dynamic‐mask multiphoton lithography[J]. Small, 2009, 5(1): 120–125.

骆志军, 刘亚男, 陈梦林, 邓琳, 甘棕松. 面向产业化应用的双光束超分辨数据存储技术[J]. 光电工程, 2019, 46(3): 1. Luo Zhijun, Liu Yanan, Chen Menglin, Deng Lin, Gan Zongsong. Industrialization oriented technology of dual-beam super-resolution data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!