光电工程, 2019, 46 (10): 190011, 网络出版: 2019-11-19   

Sn 掺杂对Ga2O3 基日盲紫外探测器性能的影响研究

Effects of Sn doping on Ga2O3-based solar blind photodetectors
作者单位
电子科技大学电子薄膜与集成器件国家重点实验室,四川 成都 611731
摘要
为了提高Ga2O3 基日盲紫外探测器的性能,本文使用分子束外延方法对β-Ga2O3 薄膜进行Sn 掺杂,并制备成MSM 型日盲紫外探测器。结果表明,Sn 掺杂可以改变薄膜晶体结构,使氧化镓薄膜由单晶向多晶相转变。同时,Sn掺杂紫外探测器的光电流和响应度相比于未掺杂器件产生了较大的提升,在254 nm、42 μW/cm2 紫外光照下,Sn 源温度900 ℃制备的薄膜探测器响应度为444.51 A/W,远高于未掺杂器件。此外,器件的-3 dB 截止波长从252 nm 调整到274 nm,表明Sn 掺杂可以有效调控紫外响应的波长。Sn 掺杂也会引入杂质能级,导致器件时间响应特性变差。
Abstract
In order to improve the performance of Ga2O3-based photodetectors (PDs), Sn-doped gallium oxide thin films were prepared on sapphire substrates by molecular beam epitaxy system. The influence of Sn doping on both Ga2O3 crystal structure and photoelectric properties of metal-semiconductor-metal (MSM) PDs were investigated. X-ray diffraction shows that gallium oxide films change from single crystal to polycrystalline phase when increasing the growth temperature of SnO2. When 254 nm and 42 μW/cm2 light was used, the responsivity of Sn-doped Ga2O3 photodetectors reached 444.51 A/W. Compared with the undoped β-Ga2O3 PDs, the photocurrent and responsivity of Sn-doped PDs were almost increased by two orders of magnitude, suggesting the improvement on PD performance. Spectral response shows that the cut-off wavelength of Sn-doped PDs changes from 252 nm to 274 nm by increasing Sn dose, which reveals an efficient way toward the development of the UV PDs focus on longer wavelengths. However, Sn doping also introduces impurity levels, resulting in poor time response of the MSM PDs.
参考文献

[1] 王保华, 李妥妥, 郑国宪. 日盲紫外探测系统研究[J]. 激光与光电子学进展, 2014, 51(2): 022202.

    Wang B H, Li T T, Zheng G X. Research of solar blind ultraviolet detection system[J]. Laser & Optoelectronics Progress, 2014,51(2): 022202.

[2] Giza R H, Acevedo P A, Bliss J D. Ultraviolet scene simulation for missile approach warning system testing[J]. Proceedings of SPIE, 1997, 3084: 282–291.

[3] Brown D M, Downey E, Kretchmer J, et al. SiC flame sensors for gas turbine control systems[J]. Solid-State Electronics, 1998,42(5): 755–760.

[4] Sang L W, Liao M Y, Sumiya M. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures[J]. Sensors, 2013, 13(8):10482–10518.

[5] Razeghi M. Short-wavelength solar-blind detectors-status,prospects, and markets[J]. Proceedings of the IEEE, 2002,90(6): 1006–1014.

[6] Dong K X, Chen D J, Zhang Y Y, et al. AlGaN solar-blind APD with low breakdown voltage[J]. Opto-Electronic Engineering,2017, 44(4): 405–409.

[7] Qian L X, Wu Z H, Zhang Y Y, et al. Ultrahigh-responsivity,rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide[J]. ACS Photonics,2017, 4(9): 2203–2211.

[8] Guo D Y, Liu H, Li P G, et al. Zero-power-consumption solar-blind photodetector based on β Ga2O3/NSTO heterojunction[J]. ACS Applied Materials & Interfaces, 2017, 9(2):1619–1628.

[9] Qian L X, Zhang H F, Lai P T, et al. High-sensitivity β-Ga2O3 solar-blind photodetector on high-temperature pretreated c-plane sapphire substrate[J]. Optical Materials Express, 2017,7(10): 3643–3653.

[10] Oh S, Jung Y, Mastro M A, et al. Development of solar-blind photodetectors based on Si-implanted β-Ga2O3[J]. Optics Express,2015, 23(22): 28300–28305.

[11] Ravadgar P, Horng R H, Yao S D, et al. Effects of crystallinity and point defects on optoelectronic applications of β-Ga2O3 epilayers[J]. Optics Express, 2013, 21(21): 24599–24610.

[12] 石雄林, 刘宏宇, 侯爽, 等. 表面等离子体在氧化镓基紫外探测器中的应用[J]. 光电工程, 2018, 45(2): 170728.

    Shi X L, Liu H Y, Hou S, et al. The applications of surface plasmons in Ga2O3 ultraviolet photodetector[J]. Opto-Electronic Engineering, 2018, 45(2): 170728.

[13] Ueda N, Hosono H, Waseda R, et al. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals[J]. Applied Physics Letters, 1997, 70(26): 3561–3563.

[14] Matsumoto T, Aoki M, Kinoshita A, et al. Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3[J]. Japanese Journal of Applied Physics, 1974, 13(10): 1578.

[15] Kohei Sasaki, Akito Kuramata, Takekazu Masui, et al. Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy[J]. Applied Physics Express, 2012, 5,035502.

[16] Chang P C, Fan Z Y, Tseng W Y, et al. β-Ga2O3 nanowires:synthesis, characterization, and p-channel field-effect transistor[J]. Applied Physics Letters, 2005, 87(22): 222102.

[17] Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3[J]. Applied Physics Letters, 2010,97(14): 142106.

[18] Orita M, Hiramatsu H, Ohta H, et al. Preparation of highly conductive,deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures[J]. Thin Solid Films, 2002, 411(1):134–139.

[19] Du X J, Li Z, Luan C N, et al. Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD[J]. Journal of Materials Science, 2015, 50(8): 3252–3257.

[20] Usui Y, Nakauchi D, Kawano N, et al. Scintillation and optical properties of Sn-doped Ga2O3 single crystals[J]. Journal of Physics and Chemistry of Solids, 2018, 117: 36–41.

[21] Sasaki K, Higashiwaki M, Kuramata A, et al. Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy[J]. Journal of Crystal Growth, 2014, 392:30–33.

[22] Li M Q, Yang N, Wang G G, et al. Highly preferred orientation of Ga2O3 films sputtered on SiC substrates for deep UV photodetector application[J]. Applied Surface Science, 2019, 471:694–702.

[23] Carrano J C, Li T, Grudowski P A, et al. Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN[J]. Journal of Applied Physics, 1998, 83(11): 6148–6160.

[24] Guo D Y, Wu Z P, Li P G, et al. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology[J]. Optical Materials Express, 2014, 4(5): 1067–1076.

侯爽, 刘庆, 邢志阳, 钱凌轩, 刘兴钊. Sn 掺杂对Ga2O3 基日盲紫外探测器性能的影响研究[J]. 光电工程, 2019, 46(10): 190011. Hou Shuang, Liu Qing, Xing Zhiyang, Qian Lingxuan, Liu Xingzhao. Effects of Sn doping on Ga2O3-based solar blind photodetectors[J]. Opto-Electronic Engineering, 2019, 46(10): 190011.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!