Journal of Innovative Optical Health Sciences, 2016, 9 (4): 1630005, Published Online: Dec. 27, 2018  

The role of surface functionalization of silica nanoparticles for bioimaging

Author Affiliations
1 QOPNA
2 CICECO and Department of Chemistry, University of Aveiro 3810-193 Aveiro, Portugal
3 CESAM and Department of Biology, University of Aveiro 3810-193 Aveiro, Portugal
4 Centro de Qui{mica Estrutural, Instituto Superior Tecnico Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
5 Department of Organic and Macromolecular Chemistry Ghent University, B-9000 Gent Belgium
Abstract
Among the several types of inorganic nanoparticles available, silica nanoparticles (SNP) have earned their relevance in biological applications namely, as bioimaging agents. In fact, fluorescent SNP (FSNP) have been explored in this field as protective nanocarriers, overcoming some limitations presented by conventional organic dyes such as high photobleaching rates. A crucial aspect on the use of fluorescent SNP relates to their surface properties, since it determines the extent of interaction between nanoparticles and biological systems, namely in terms of colloidal stability in water, cellular recognition and internalization, tracking, biodistribution and speci- ficity, among others. Therefore, it is imperative to understand the mechanisms underlying the interaction between biosystems and the SNP surfaces, making surface functionalization a relevant step in order to take full advantage of particle properties. The versatility of the surface chemistry on silica platforms, together with the intrinsic hydrophilicity and biocompatibility, make these systems suitable for bioimaging applications, such as those mentioned in this review.
References

[1] M. Montalti, L. Prodi, E. Rampazzo, N. Zaccheroni, "Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine," Chem. Soc. Rev. 43, 4243–4268 (2014).

[2] G. Wang, X. Su, "The synthesis and bio-applications of magnetic and fluorescent bifunctional composite nanoparticles," The Analyst 136, 1783– 1798 (2011).

[3] S. W. Bae, W. Tan, J.-I. Hong, "Fluorescent dye-doped silica nanoparticles: New tools for bioapplications," Chem. Commun. 48, 2270–2282 (2012).

[4] Z. Q. Chu, S. L. Zhang, C. Yin, G. Lin, Q. Li, "Designing nanoparticle carriers for enhanced drug efficacy in photodynamic therapy," Biomater. Sci. 2, 827–832 (2014).

[5] S. Walia, A. Acharya, "Silica micro/nanospheres for theranostics: From bimodal MRI and fluorescent imaging probes to cancer therapy," Beilstein J. Nanotechnol. 6, 546–558 (2015).

[6] M. Z. Iqbal, X. Ma, T. Chen, L. E. Zhang, W. Ren, L. Xiang, A. Wu, "Silica-coated super-paramagnetic iron oxide nanoparticles (SPIONPs): A new type contrast agent of T1 magnetic resonance imaging (MRI)," J. Mater. Chem. B 3, 5172–5181 (2015).

[7] C. Caltagirone, A. Bettoschi, A. Garau, R. Montis, "Silica-based nanoparticles: A versatile tool for the development of efficient imaging agents," Chem. Soc. Rev. 44, 4645–4671 (2015).

[8] C. M. B. Carvalho, E. Alves, L. Costa, J. P. C. Tome, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tome, J. A. S. Cavaleiro, A. Almeida, ^A . Cunha, Z. Lin, J. Rocha, "Functional cationic nanomagnet–porphyrin hybrids for the photoinactivation of microorganisms," ACS Nano 4, 7133–7140 (2010).

[9] E. Alves, J. M. M. Rodrigues, M. A. F. Faustino, M. G. P. M. S. Neves, J. A. S. Cavaleiro, Z. Lin, ^A . Cunha, M. H. Nadais, J. P. C. Tome, A. Almeida, A new insight on nanomagnet–porphyrin hybrids for photodynamic inactivation of microorganisms,", Dyes Pigments 110, 80–88 (2014).

[10] D. Douroumis, I. Onyesom, M. Maniruzzaman, J. Mitchell, "Mesoporous silica nanoparticles in nanotechnology," Crit. Rev. Biotechnol. 33, 229–245 (2013).

[11] L. Tang, J. Cheng, "Nonporous silica nanoparticles for nanomedicine application," Nano Today 8, 290–312 (2013).

[12] Slowing, II, J. L. Vivero-Escoto, C.W.Wu, V. S. Lin, "Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers," Adv. Drug Delivery Rev. 60, 1278–1288 (2008).

[13] M. Vallet-Regi, F. Balas, D. Arcos, "Mesoporous materials for drug delivery," Angew. Chem. Int. Ed. 46, 7548–7558 (2007).

[14] W. Wei, M. Wei, S. Liu, "Silica nanoparticles as a carrier for signal amplification," Rev. Anal. Chem. 31, 163–176 (2012).

[15] X. Wu, M. Wu, J. X. Zhao, "Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy," Nanomed. Nanotechnol. Biol. Med. 10, 297–312 (2014).

[16] A. Bitar,N.M.Ahmad, H. Fessi, A. Elaissari, "Silicabased nanoparticles for biomedical applications," Drug Discovery Today 17, 1147–1154 (2012).

[17] B. Sahoo, K. S. Devi, S. Dutta, T. K. Maiti, P. Pramanik, D. Dhara, "Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications," J. Colloid Interface Sci. 431, 31–41 (2014).

[18] Y. Chen, K. Ai, J. Liu, G. Sun, Q. Yin, L. Lu, "Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging," Biomaterials 60, 111–120 (2015).

[19] J. Drbohlavova, J. Chomoucka, V. Adam, M. Ryvolova, T. Eckschlager, J. Hubalek R. Kizek, "Nanocarriers for anticancer drugs–new trends in nanomedicine," Curr. Drug Metab. 14, 547–564 (2013).

[20] D. Bechet, P. Couleaud, C. Frochot, M. L. Viriot, F. Guillemin, M. Barberi-Heyob, "Nanoparticles as vehicles for delivery of photodynamic therapy agents," Trends Biotechnol. 26, 612–621 (2008).

[21] C. K. Lim, J. Heo, S. Shin, K. Jeong, Y. H. Seo, W. D. Jang, C. R. Park, S. Y. Park, S. Kim and I. C. Kwon, "Nanophotosensitizers toward advanced photodynamic therapy of Cancer," Cancer Lett. 334, 176–187 (2013).

[22] I. Miletto, E. Bottinelli, G. Caputo, S. Coluccia, E. Gianotti, "Bright photoluminescent hybrid mesostructured silica nanoparticles," Phys. Chem. Chem. Phys. 14, 10015–10021 (2012).

[23] A. Ebrahiminezhad, Y. Ghasemi, S. Rasoul-Amini, J. Barar, S. Davaran, "Preparation of novel magnetic fluorescent nanoparticles using amino acids," Colloids Surf. B 102, 534–539 (2013).

[24] S.-W. Ha, C. E. Camalier, G. R. Beck, J.-K. Lee, "New method to prepare very stable and biocompatible fluorescent silica nanoparticles," Chem. Commun., doi: 10.1039/b902195g, 2881–2883.

[25] S. Palantavida, N. V. Guz, I. Sokolov, "Functionalized ultrabright fluorescent mesoporous silica nanoparticles," Part. Part. Syst. Char. 30, 804–811 (2013).

[26] J. Li, F. Liu, Q. Shao, Y. Min, M. Costa, E. K. Yeow, B. Xing, "Enzyme-responsive cell-penetrating peptide conjugated mesoporous silica quantum dot nanocarriers for controlled release of nucleustargeted drug molecules and real-time intracellular fluorescence imaging of tumor cells," Adv. Healthcare Mater. 3, 1230–1239 (2014).

[27] M. Y. Chen, Z. Z. Chen, L. L. Wu, H. W. Tang, D. W. Pang, "Goat anti-rabbit IgG conjugated fluorescent dye-doped silica nanoparticles for human breast carcinoma cell recognition," The Analyst, 138, 7411–7416 (2013).

[28] S. H. Wu, Y. Hung, C. Y. Mou, "Mesoporous silica nanoparticles as nanocarriers," Chem. Commun. 47, 9972–9985 (2011).

[29] A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova M. Thompson, "Understanding biophysicochemical interactions at the nano-bio interface," Nat. Mater. 8, 543–557 (2009).

[30] X.-R. Xia, N. A. Monteiro-Riviere J. E. Riviere, "An index for characterization of nanomaterials in biological systems," Nat. Nanotechnol. 5, 671–675 (2010).

[31] G. Canton, R. Riccò, F. Marinello, S. Carmignato and F. Enrichi, "Modified St€ober synthesis of highly luminescent dye-doped silica nanoparticles," J. Nanopart. Res. 13, 4349–4356 (2011).

[32] B. Korzeniowska, R. Nooney, D. Wencel, C. McDonagh, "Silica nanoparticles for cell imaging and intracellular sensing," Nanotechnology, 24, 442002 (2013).

[33] J. Yan, M. C. Estevez, J. E. Smith, K. Wang, X. He, L. Wang, W. Tan, "Dye-doped nanoparticles for bioanalysis," Nano Today 2, 44–50 (2007).

[34] F. Tang, L. Li and D. Chen, "Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery," Adv Mater, 24, 1504–1534 (2012).

[35] Y. H. Jin, S. Lohstreter, D. T. Pierce, J. Parisien, M. Wu, C. Hall, J. X. J. Zhao, "Silica nanoparticles with continuously tunable sizes: Synthesis and size effects on cellular contrast Imaging," Chem. Mater. 20, 4411–4419 (2008).

[36] L. Pan, Q. He, J. Liu, Y. Chen, M. Ma, L. Zhang and J. Shi, "Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles," J. Am. Chem. Soc. 134, 5722– 5725 (2012).

[37] L. M. Rossi, L. Shi, F. H. Quina and Z. Rosenzweig, "Stober synthesis of monodispersed luminescent silica nanoparticles for bioanalytical assays," Langmuir, ACS J Surf. Colloids 21, 4277–4280 (2005).

[38] W. Stober, A. Fink, E. Bohn, "Controlled growth of monodisperse silica spheres in micron size range," J. Colloid Interface Sci. 26, 62-& (1968).

[39] Y. Piao, A. Burns, J. Kim, U. Wiesner, T. Hyeon, "Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications," Adv. Funct. Mater. 18, 3745–3758 (2008).

[40] F. Figueira, J. A. S. Cavaleiro, J. P. C. Tome, "Silica nanoparticles functionalized with porphyrins and analogs for biomedical studies," J. Porphyrins Phthalocyanines 15, 517–533 (2011).

[41] K. D. Hartlen, A. P. T. Athanasopoulos, V. Kitaev, "Facile preparation of highly monodisperse small silica spheres (15 to > 200 nm) suitable for colloidal templating and formation of ordered arrays," Langmuir, Acs J. Surf. Colloids 24, 1714–1720 (2008).

[42] T. Yokoi, Y. Sakamoto, O. Terasaki, Y. Kubota, T. Okubo, T. Tatsumi, "Periodic arrangement of silica nanospheres assisted by amino acids," J. Am. Chem. Soc. 128, 13664–13665 (2006).

[43] T. Yokoi, J. Wakabayashi, Y. Otsuka, W. Fan, M. Iwama, R. Watanabe, K. Aramaki, A. Shimojima, T. Tatsumi, T. Okubo, "Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids," Chem. Mater. 21, 3719–3729 (2009).

[44] J. Wang, Z. H. Shah, S. Zhang, R. Lu, "Silicabased nanocomposites via reverse microemulsions: Classifications, preparations, and applications," Nanoscale 6, 4418–4437 (2014).

[45] S. Santra, Cancer Nanotechnol, S. R. Grobmyer and B. M. Moudgil eds., Vol. 624, pp. 151–162, Humana Press (2010).

[46] S. Santra, P. Zhang, K. M. Wang, R. Tapec, W. H. Tan, "Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers," Anal. Chem. 73, 4988–4993 (2001).

[47] R. P. Bagwe, C. Yang, L. R. Hilliard, W. Tan, "Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method," Langmuir, ACS J. Surf. Colloids 20, 8336–8342 (2004).

[48] S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, P. N. Prasad, "Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy," J. Am. Chem. Soc. 129, 2669–2675 (2007).

[49] T. Y. Ohulchanskyy, I. Roy, L. N. Goswami, Y. Chen, E. J. Bergey, R. K. Pandey, A. R. Oseroff, P. N. Prasad, "Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer," Nano Lett. 7, 2835–2842 (2007).

[50] M. J. Ruedas-Rama, J. D. Walters, A. Orte, E. A. H. Hall, "Fluorescent nanoparticles for intracellular sensing: A review," Anal. Chim. Acta 751, 1–23 (2012).

[51] A. Schulz, C. McDonagh, "Intracellular sensing and cell diagnostics using fluorescent silica nanoparticles," Soft Matter 8, 2579 (2012).

[52] A. Singh, P. Sharma, S. Brown and B. Moudgil, "Luminescent and magnetic nanoparticulates as biomarkers," Kona Powder Part. J 28, 20–37 (2010).

[53] S. Liang, K. Shephard, D. T. Pierce, J. X. Zhao, "Effects of a nanoscale silica matrix on the fluorescence quantum yield of encapsulated dye molecules," Nanoscale 5, 9365–9373 (2013).

[54] A. Burns, H. Ow and U. Wiesner, "Fluorescent core-shell silica nanoparticles: Towards "Lab on a Particle" architectures for nanobiotechnology," Chem. Soc. Rev, 35, 1028–1042 (2006).

[55] S. Yang, D. Lu, L. Tian, F. He, G. Chen, F. Shen, H. Xu, Y. Ma, "Stable water-dispersed organic nanoparticles: Preparation, optical properties, and cell imaging application," Nanoscale 3, 2261–2267 (2011).

[56] H. Dong, Y. Liu, Z. Ye, W. Zhang, G. Wang, Z. Liu, J. Yuan, "Luminescent nanoparticles of silica-encapsulated cadmium–Tellurium (CdTe) quantum dots with a core – shell structure: Preparation and Characterization," Helv. Chim. Acta 92, 2249–2256 (2009).

[57] J. Xu, J. Liang, J. Li, W. Yang, "Multicolor dyedoped silica nanoparticles independent of FRET," Langmuir Acs J. Surf. Colloids 26, 15722–15725 (2010).

[58] W. Wang, P. D. Nallathamby, C. M. Foster, J. L. Morrell-Falvey, N. P. Mortensen, M. J. Doktycz, B. Gu, S. T. Retterer,"Volume labeling with Alexa fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles," Nanoscale 5, 10369–10375 (2013).

[59] M. Al-Rawi, S. Diabate, C. Weiss, "Uptake and intracellular localization of submicron and nanosized SiO(2) particles in HeLa cells," Arch. Toxicol. 85, 813–826 (2011).

[60] Y. Ma, Y. Li, S. Ma, X. Zhong, "Highly bright water-soluble silica coated quantum dots with excellent stability," J. Mater. Chem. B 2, 5043 (2014).

[61] J. Cao, H. Niu, D. Han, S. Yang, Q. Liu, T. Wang, J. Yang, "Biocompatible ZnS:Mn(2tT quantum dots/SiO2 nanocomposites as fluorescent probe for imaging HeLa cell," J. Mater. Sci. — Mater. Med. 26, 236 (2015).

[62] M. Tan, G. Wang, X. Hai, Z. Ye, J. Yuan, "Development of functionalized fluorescent europium nanoparticles for biolabeling and time-resolved fluorometric applications," J. Mater. Chem. 14, 2896 (2004).

[63] J. Wu, G. Wang, D. Jin, J. Yuan, Y. Guan, J. Piper, "Luminescent europium nanoparticles with a wide excitation range from UV to visible light for biolabeling and time-gated luminescence bioimaging," Chem. Commun., doi: 10.1039/ b715054g, 365.

[64] X. Guo, J.-L. Canet, D. Boyer, A. Gautier, R. Mahiou, "Sol–gel emulsion synthesis of biphotonic core–shell nanoparticles based on lanthanide doped organic–inorganic hybrid materials," J. Mater. Chem. 22, 6117 (2012).

[65] O. D. Bochkova, A. R. Mustafina, A. R. Mukhametshina, V. A. Burilov, V. V. Skripacheva, L. Y. Zakharova, S. V. Fedorenko, A. I. Konovalov, S. E. Soloveva, I. S. Antipin, "The interfacial interactions of Tb-doped silica nanoparticles with surfactants and phospholipids revealed through the fluorescent response," Colloids Surf. B 92, 327–333 (2012).

[66] H. Jiang, G. Wang, W. Zhang, X. Liu, Z. Ye, D. Jin, J. Yuan, Z. Liu, "Preparation and time-resolved luminescence bioassay application of multicolor luminescent lanthanide nanoparticles," J. Fluoresc. 20, 321–328 (2010).

[67] P. C. R. Soares-Santos, H. I. S. Nogueira, J. Rocha, V. Felix, M. G. B. Drew, R. A. Sa Ferreira, L. S. D. Carlos, T. Trindade, "Lanthanide complexes of 2-hydroxynicotinic acid: Synthesis, luminescence properties and the crystal structures of [Ln (HnicO) 2 (μ-HnicO)(H2O)]·nH 2 O (Ln= Tb, Eu)," Polyhedron 22, 3529–3539 (2003).

[68] P. C. R. Soares-Santos, H. I. S. Nogueira, V. Felix, M. G. B. Drew, R. A. S. Ferreira, L. D. Carlos, T. Trindade, "Novel lanthanide luminescent materials based on complexes of 3-hydroxypicolinic acid and silica nanoparticles," Chem. Mater. 15, 100–108 (2003).

[69] P. C. R, Soares-Santos, H. I. S. Nogueira, A. Filipe, A. Paz, A. Rute, Sa Ferreira, L. D. Carlos, J. Klinowski, T. Trindade, "Lanthanide complexes of 2,6-dihydroxybenzoic acid: Synthesis, crystal structures and luminescent properties of [nBu4N]2 [Ln(2,6-dhb)5(H2O)2] (Ln = Sm and Tb)," Eur. J. Inorg. Chem. 2003, 3609–3617 (2003).

[70] H. Uh, S. Petoud, "Novel antennae for the sensitization of near infrared luminescent lanthanide cations," Comptes Rendus Chimie 13, 668–680 (2010).

[71] H. Tsukube, "Lanthanide complexes in molecular recognition and chirality sensing of biological substrates," Chem. Rev. 102, 2389–2403 (2002).

[72] C. Pitois, A. Hult, M. Lindgren, "Lanthanide-cored fluorinated dendrimer complexes: synthesis and luminescence characterization," J. Lumin. 111, 265–283 (2005).

[73] S. Faulkner, S. J. A. Pope, P. B. Pye, "Lanthanide complexes for luminescence imaging applications," Appl. Spectrosc. Rev. 40, 1–31 (2005).

[74] K. Binnemans, "Lanthanide-based luminescent hybrid materials," Chem. Rev. 109, 4283–4374 (2009).

[75] Z. Gilles, Z. Asfari, J.-M. Lehnd, "Lanthanide complexes of encapsulating ligands: Luminescent devices at the molecular level," Pure Appl. Chem. 67, 135–140 (1995).

[76] R. C. Leif, L. M. Vallarino, M. C. Becker, "Review: Increasing the luminescence of lanthanide complexes," Cytometry A 69, 767–778 (2006).

[77] L. Tian, Z. Dai, L. Zhang, R. Zhang, Z. Ye, J. Wu, D. Jin, J. Yuan, "Preparation and time-gated luminescence bioimaging applications of long wavelength-excited silica-encapsulated europium nanoparticles," Nanoscale 4, 3551–3557 (2012).

[78] C. M. Granadeiro, R. A. S. Ferreira, P. C. R. Soares-Santos, L. D. Carlos, T. Trindade, H. I. S. Nogueira, "Lanthanopolyoxotungstates in silica nanoparticles: Multi-wavelength photoluminescent core/shell materials," J. Mater. Chem. 20, 3313 (2010).

[79] L. Zhang, L. Tian, Z. Ye, B. Song, J. Yuan, "Preparation of visible-light-excited europium biolabels for time-resolved luminescence cell imaging application," Talanta 108, 143–149 (2013).

[80] Y. Wu, M. Shi, L. Zhao, W. Feng, F. Li, C. Huang, "Visible-light-excited and europium-emissive nanoparticles for highly-luminescent bioimaging in vivo," Biomaterials 35, 5830–5839 (2014).

[81] J. H. Kim, H. H. Chung, M. S. Jeong, M. R. Song, K. W. Kang, J. S. Kim, "One-step detection of circulating tumor cells in ovarian cancer using enhanced fluorescent silica nanoparticles," Int. J. Nanomed. 8, 2247–2257 (2013).

[82] Y. Qu, L. Feng, C. Tong, B. Liu, C. Lü, "Poly(pphenylenevinylene) functionalized fluorescent mesoporous silica nanoparticles for drug release and cell imaging,"Microporous Mesoporous Mater. 182, 155–164 (2013).

[83] C. Miao, D. Li, Y. Zhang, J. Yu, R. Xu, "AIE luminogen functionalized mesoporous silica nanoparticles as efficient fluorescent sensor for explosives detection in water," Microporous Mesoporous Mater. 196, 46–50 (2014).

[84] J. Liu, L. Zang, Y. Wang, G. Liu, "Preparation of acridine orange-doped silica nanoparticles for pH measurement," J. Lumin. 147, 155–158 (2014).

[85] H. Tan, Q. Li, C. Ma, Y. Song, F. Xu, S. Chen, L. Wang, "Lanthanide based dual-emission fluorescent probe for detection of mercury (II) in milk," Biosens. Bioelectron. 63, 566–571 (2015).

[86] S. Kralj, M. Rojnik, R. Romih, M. Jagodi , J. Kos, D. Makovec, "Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles," J. Nanopart. Res. 14, 1151–1165 (2012).

[87] E. Besic Gyenge, X. Darphin, A. Wirth, U. Pieles, H. Walt, M. Bredell and C. Maake, "Uptake and fate of surface modified silica nanoparticles in head and neck squamous cell carcinoma," J. Nanobiotechnol. 9, 32 (2011).

[88] A. Liberman, N. Mendez, W. C. Trogler, A. C. Kummel, "Synthesis and surface functionalization of silica nanoparticles for nanomedicine," Surf. Sci. Rep. 69, 132–158 (2014).

[89] X. He, H. Nie, K. Wang, W. Tan, X. Wu, P. Zhang, "In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles," Anal. Chem. 80, 95979–603 (2008).

[90] C. Morelli, P. Maris, D. Sisci, E. Perrotta, E. Brunelli, I. Perrotta, M. L. Panno, A. Tagarelli, C. Versace, M. F. Casula, F. Testa, S. Ando, J. B. Nagy, L. Pasqua, "PEG-templated mesoporous silica nanoparticles exclusively target cancer cells," Nanoscale 3, 3198–3207 (2011).

[91] M. Li, J. W. Y. Lam, F. Mahtab, S. Chen, W. Zhang, Y. Hong, J. Xiong, Q. Zheng and B. Z. Tang, "Biotin-decorated fluorescent silica nanoparticles with aggregation-induced emission characteristics: Fabrication, cytotoxicity and biological applications," J. Mater. Chem. B 1, 676 (2013).

[92] L. Cai, Z. Z. Chen, M. Y. Chen, H. W. Tang and D. W. Pang, "MUC-1 aptamer-conjugated dyedoped silica nanoparticles for MCF-7 cells detection," Biomaterials 34, 371–381 (2013).

[93] K. Osseo-Asare, F. J. Arriagada, "Growth kinetics of nanosize silica in a nonionic water-in-oil microemulsion: A reverse micellar pseudophase reaction model," J. Colloid Interface Sci. 218, 68–76 (1999).

[94] C. Haensch, S. Hoeppener, U. S. Schubert, "Chemical modification of self-assembled silane based monolayers by surface reactions," Chem. Soc. Rev. 39, 2323–2334 (2010).

[95] N. Erathodiyil, J. Y. Ying, "Functionalization of inorganic nanoparticles for bioimaging applications," Acc. Chem. Res. 44, 925–935 (2011).

[96] J. Zhao, Y. Liu, H. J. Park, J. M. Boggs, A. Basu, "Carbohydrate-coated fluorescent silica nanoparticles as probes for the galactose/3-sulfogalactose carbohydrate-carbohydrate interaction using model systems and cellular binding studies," Bioconjugate Chem. 23, 1166–1173 (2012).

[97] M. Helle, E. Rampazzo, M. Monchanin, F. Marchal, F. Guillemin, S. Bonacchi, F. Salis, L. Prodi, L. Bezdetnaya, "Surface chemistry architecture of silica nanoparticles determine the efficiency of in vivo fluorescence lymph node mapping", ACS Nano 7, 8645–8657 (2013).

[98] H. L. Kim, S. B. Lee, H. J. Jeong, D. W. Kim, "Enhanced tumor targetability of PEGylated mesoporous silica nanoparticles on in vivo optical imaging according to their size," RSC Adv. 4, 31318 (2014).

[99] H. Lee, D. Sung, J. Kim, B. T. Kim, T. Wang, S. S. An, S. W. Seo, D. K. Yi, "Silica nanoparticle-based dual imaging colloidal hybrids: Cancer cell imaging and biodistribution", Int. J. Nanomed. 10 Spec Iss, 215–225 (2015).

[100] M. Xie, H. Shi, Z. Li, H. Shen, K. Ma, B. Li, S. Shen, Y. Jin, "A multifunctional mesoporous silica nanocomposite for targeted delivery, controlled release of doxorubicin and bioimaging," Colloids Surf. B 110, 138–147 (2013).

[101] Y. Yang and J. Li, "Lipid, protein and poly (NIPAM) coated mesoporous silica nanoparticles for biomedical applications," Adv. Colloid Interface Sci. 207, 155–163 (2014).

[102] J. Weingart, P. Vabbilisetty, X. L. Sun, "Membrane mimetic surface functionalization of nanoparticles: Methods and applications," Adv. Colloid Interface Sci. 197–198, 68–84 (2013).

[103] M. Mahmoudi, I. Lynch, M. R. Ejtehadi, M. P. Monopoli, F. B. Bombelli, S. Laurent, "Protein– nanoparticle interactions: Opportunities and challenges," Chem. Rev. 111, 5610–5637 (2011).

[104] A. Yang, W. Song, A. Wang, P. Zhu, J. Fei J. Li, "Lipid coated mesoporous silica nanoparticles as photosensitive drug carriers," Phys. Chem. Chem. Phys. 12, 4418–4422 (2010).

[105] Y. Tang, Y. Zhao, X. Wang, T. Lin, "Layer-bylayer assembly of silica nanoparticles on 3D fibrous scaffolds: Enhancement of osteoblast cell adhesion, proliferation, and differentiation," J. Biomed. Mater. Res. Part A 102, 3803–3812 (2014).

[106] Q.-L. Li, Y. Sun, Y.-L. Sun, J. Wen, Y. Zhou, Q.-M. Bing, L. D. Isaacs, Y. Jin, H. Gao, Y.-W. Yang, "Mesoporous silica nanoparticles coated by layer-by-layer self-assembly using cucurbit[7]uril for in vitro and in vivo anticancer drug release," Chem. Mater. doi: 10.1021/cm503304p.

[107] S. O. Pereira, T. Trindade, A. Barros-Timmons, "Biotinylation of optically responsive gold/polyelectrolyte nanostructures," Gold Bull. 48, 3–11 (2014).

[108] M. Corricelli, N. Depalo, E. Di Carlo, E. Fanizza, V. Laquintana, N. Denora, A. Agostiano, M. Striccoli, M. L. Curri, "Biotin-decorated silica coated PbS nanocrystals emitting in the second biological near infrared window for bioimaging," Nanoscale 6, 7924–7933 (2014).

[109] C. M. Beddoes, C. P. Case, W. H. Briscoe, "Understanding nanoparticle cellular entry: A physicochemical perspective," Adv. Colloid Interface Sci. 218, 48–68 (2015).

[110] O. Gamucci, A. Bertero, M. Gagliardi, G. Bardi, "Biomedical nanoparticles: Overview of their surface immune-compatibility," Coatings 4, 139–159 (2014).

[111] P. M. Pereira, S. Silva, J. A. Cavaleiro, C. A. Ribeiro, J. P. Tome R. Fernandes, "Galactodendritic phthalocyanine targets carbohydratebinding proteins enhancing photodynamic therapy," PloS one 9, e95529 (2014).

[112] P. M. Pereira, B. Korsak, B. Sarmento, R. J. Schneider, R. Fernandes, J. P. Tome, "Antibodies armed with photosensitizers: From chemical synthesis to photobiological applications," Org. Biomol. Chem. 13, 2518–2529 (2015).

[113] A. Lesniak, F. Fenaroli, M. P. Monopoli, C. berg, K. A. Dawson, A. Salvati, "Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells," ACS Nano 6, 5845–5857 (2012).

[114] A. Verma, F. Stellacci, "Effect of surface properties on nanoparticle-cell interactions," Small 6, 12–21 (2010).

[115] F. Wahid, T. Khan, A. Shehzad, M. Ul-Islam, Y. Y. Kim, "Interaction of nanomaterials with cells and their medical applications," J. Nanosci. Nanotechnol. 14, 744–754 (2014).

[116] A. Albanese, P. S. Tang, W. C. Chan, "The effect of nanoparticle size, shape, and surface chemistry on biological systems," Annu Rev Biomed. Eng. 14, 1–16 (2012).

[117] S. Sandoval, N. Mendez, J. G. Alfaro, J. Yang, S. Aschemeyer, A. Liberman, W. C. Trogler, A. C. Kummel, "Quantification of endocytosis using a folate functionalized silica hollow nanoshell platform," J. Biomed. Opt. 20, 88003 (2015).

[118] T. Asefa, Z. Tao, "Biocompatibility of mesoporous silica nanoparticles," Chem. Res. Toxicol. 25, 2265–2284 (2012).

[119] C. O. Pritz, M. Bitsche, W. Salvenmoser, J. Dudas, A. Schrott-Fischer, R. Glueckert, "Endocytic traf- ficking of silica nanoparticles in a cell line derived from the organ of Corti," Nanomed. Nanotechnol. Biol. Med. 8, 239–252 (2013).

[120] C. Argyo, V. Weiss, C. Br uchle, T. Bein, "Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery," Chem. Mater. 26, 435–451 (2014).

[121] S. Salatin, S. Maleki Dizaj, A. Yari Khosroushahi, "Effect of the surface modification, size, and shape on cellular uptake of nanoparticles," Cell Biol. Int. 39, 881–890 (2015).

[122] M. C. Gomes, R. Fernandes, A. Cunha, J. P. Tome, T. Trindade, "Fluorescence biolabeling using methylated silica nanoparticles containing a lanthanide complex," J. Mater. Chem. B 1, 5429– 5435 (2013).

[123] I. Slowing, B. G. Trewyn, V. S. Y. Lin, "Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells," J. Am. Chem. Soc. 128, 14792–14793 (2006).

[124] R. E. Yanes, D. Tarn, A. A. Hwang, D. P. Ferris, S. P. Sherman, C. R. Thomas, J. Lu, A. D. Pyle, J. I. Zink, F. Tamanoi, "Involvement of lysosomal exocytosis in the excretion of mesoporous silica nanoparticles and enhancement of the drug delivery effect by exocytosis inhibition," Small 9, 697– 704 (2013).

[125] S. Shahabi, L. Treccani, R. Dringen, K. Rezwan, "Modulation of silica nanoparticle uptake into human osteoblast cells by variation of the ratio of amino and sulfonate surface groups: Effects of serum," ACS Appl. Mater. Interfaces 7, 13821– 13833 (2015).

[126] J. Tu, T. Wang, W. Shi, G. Wu, X. Tian, Y. Wang, D. Ge, L. Ren, "Multifunctional ZnPc-loaded mesoporous silica nanoparticles for enhancement of photodynamic therapy efficacy by endolysosomal escape," Biomaterials 33, 7903–7914 (2012).

[127] C. Fruijtier-Polloth, "The toxicological mode of action and the safety of synthetic amorphous silicaa nanostructured material," Toxicology 294, 61–79 (2012).

[128] D. Napierska, L. C. Thomassen, D. Lison, J. A. Martens, P. H. Hoet, "The nanosilica hazard: Another variable entity," Part Fibre Toxicol. 7, 39 (2010).

[129] M. Guo, X. Xu, X. Yan, S. Wang, S. Gao, S. Zhu, "In vivo biodistribution and synergistic toxicity of silica nanoparticles and cadmium chloride in mice," J. Hazard. Mater. 260, 780–788 (2013).

[130] N. Hao, L. Li, Q. Zhang, X. Huang, X. Meng, Y. Zhang, D. Chen, F. Tang, L. Li, "The shape effect of PEGylated mesoporous silica nanoparticles on cellular uptake pathway in Hela cells," Microporous Mesoporous Mater. 162, 14–23 (2012).

[131] D. Tarn, C. E. Ashley, M. Xue, E. C. Carnes, J. I. Zink, C. J. Brinker, "Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility," Acc. Chem. Res. 46, 792–801 (2013).

[132] S. J. Soenen, B. Manshian, S. H. Doak, S. C. De Smedt, K. Braeckmans, "Fluorescent non-porous silica nanoparticles for long-term cell monitoring: Cytotoxicity and particle functionality," Acta biomaterialia 9, 9183–9193 (2013).

[133] I. I. Slowing, C.-W. Wu, J. L. Vivero-Escoto, V. S. Y. Lin, "Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells," Small 5, 57–62 (2009).

[134] Q. He, J. Shi, "Mesoporous silica nanoparticle based nano drug delivery systems: Synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility," J. Mater. Chem. 21, 5845 (2011).

[135] Y. Chen, H. Chen, J. Shi, "In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles," Adv. Mater. 25, 3144–3176 (2013).

Maria C. Gomes, Angela Cunha, Tito Trindade, Joao P. C. Tome. The role of surface functionalization of silica nanoparticles for bioimaging[J]. Journal of Innovative Optical Health Sciences, 2016, 9(4): 1630005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!