应用激光, 2012, 32 (6): 469, 网络出版: 2013-01-14  

激光复合溶胶-凝胶法制备TiN-TiB2强化涂层的组织与性能

Microstructure and Property of TiN-TiB2 Hardened Coating Prepared by Hybrid Method Combined Sol-Gel with Laser Hardening
张群莉 1,2,3,*曾启 2,3姚建华 2,3潘颐 1
作者单位
1 浙江大学材料科学与工程学系, 浙江 杭州 310027
2 特种装备制造与先进加工技术教育部/浙江省重点实验室(浙江工业大学), 浙江 杭州 310014
3 浙江工业大学激光加工技术工程研究中心, 浙江 杭州 310014
摘要
采用溶胶-凝胶法制备得到含有TiO2、BN和C的复合粉末, 将其预置在45钢基体表面, 然后通过激光强化原位制备出含有TiN和TiB2颗粒的强化涂层。利用扫描电镜、能谱仪和X射线衍射仪对涂层组织、成分和物相进行了分析, 并测试了涂层显微硬度。结果表明, 强化涂层与基体结合良好, 涂层中无裂纹、气孔等缺陷, 原位生成的颗粒状TiN和须状TiB2均匀分布在强化层中。涂层最高硬度达到956 HV0.1, 显著地提高了45钢的硬度。
Abstract
The compound powder consisted of TiO2、BN and graphitic was prepared by sol-gel method at first, and was preplaced on the surface of 45 steel substrate, and then was irradiated by high density laser to get the enhanced coating with TiN and TiB2 in this paper. The microstructures, elements composition and phases were investigated by scanning electron microscope, spectrum analyzer and x-ray diffraction respectively. The microhardness of the coating was tested as well. The results show that the coating has a good combination with the matrix and no cracks, holes and other defects. The granular TiN and whisker TiB2 which were in situ generated are uniformly distributed in the hardened layer. The hardness of the coating is up to 956 HV0.1, which shows that the hybrid strengthening technique significantly improves the hardness of the matrix.
参考文献

[1] 黄伟容, 肖泽辉. 激光熔覆陶瓷涂层的研究现状[J]. 表面技术, 2009, 38(4): 57-60.

[2] 魏仑, 陈庆华, 龙晋明, 等. 激光熔覆原位自生复相陶瓷颗粒增强涂层[J]. 激光技术, 2002, 26(4): 246-249.

[3] 张维平, 马海波, 陈天远, 等. 激光熔覆原位生成硬质陶瓷颗粒钴基复合涂层[J]. 中国激光, 2009, 36(12): 3277-3281.

[4] XU JIANG, LIU WENJIN. Wear characteristic of in situ synthetic TiB2 particulate-reinforced Al matrix composite formed by laser cladding [J]. Wear, 2006, 260(5): 486-492.

[5] ROY CHOUDHURY A, TAMER EZZ, LI LIN. Synthesis of hard nano-structured metal matrix composite boride coating using laser and sol-gel technology[J]. Materials Science and Engineering A, 2007(445-446): 193-202.

[6] 陈莹莹, 李文戈, 吴培桂. 激光熔覆原位合成碳化钨增强铁基表面复合材料的研究[J]. 金属热处理, 2011, 36(3): 64-67.

[7] FAN Z, NIU H J, MIODOWNIK A P, et al. Microstructure and mechanical properties of in situ Ti/TiB MMCs produced by a blended elemental powder metallurgy method[J]. Key Engineering Materials, 1997(127-131): 423-430.

[8] SWIFT G A, KOC R. Formation studies of TiC from carbon coated TiO2 [J]. Journal of Materials Science, 999, 34(13): 3083-3093.

[9] HENRY PREISS, LUTZ-MICHAEL BERGER, DIETRICH SCHULTZE. Studies on the carbothermal preparation of titanium carbide from different gel precursors [J]. Journal of the European Ceramic Society, 1999, 19(2): 195-206.

[10] 文进. TiB2-TiN陶瓷材料SHS合成过程分析[J]. 材料导报, 2003, 17(5): 82-84.

[11] 李戈扬, 王公耀, 吴亮, 等. 双靶反应溅射Ti-B-N复合膜的研制[J]. 上海交通大学学报, 1997, 31(4): 44-48.

[12] 韩文静, 宋进朝. Ti-6Al-4V合金表面激光熔覆NiCrBSi+5%BN涂层组织和性能[J]. 中国涂料, 2011, 26(4): 51-54.

张群莉, 曾启, 姚建华, 潘颐. 激光复合溶胶-凝胶法制备TiN-TiB2强化涂层的组织与性能[J]. 应用激光, 2012, 32(6): 469. Zhang Qunli, Zeng Qi, Yao Jianhua, Pan Yi. Microstructure and Property of TiN-TiB2 Hardened Coating Prepared by Hybrid Method Combined Sol-Gel with Laser Hardening[J]. APPLIED LASER, 2012, 32(6): 469.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!