红外技术, 2018, 40 (11): 1077, 网络出版: 2018-12-18   

微通道板高增益二次电子发射层制备研究

Preparation of High Gain Secondary Electron Emission Layer for Micro-channel Plate
郝子恒 1,2,*李相鑫 1,2张妮 1,2朱宇峰 1,2李丹 1,2
作者单位
1 微光夜视技术重点实验室,陕西西安 710065
2 昆明物理研究所,云南昆明 650223
摘要
提高微通道板( Micro-channel Plate,MCP)的综合性能一直都是器件使用性能提升首要解决的关键问题。纳米薄膜材料的发展及其制备技术的成熟为微通道板性能提升提供了契机,使用原子层沉积(Atomic Layer Deposition,ALD)技术,在微通道板的通道内壁生长一层 Al2O3薄膜作为高二次电子发射层,以增强通道内壁的二次电子发射能力,从而提升微通道板的增益性能。通过调节 ALD沉积过程中的循环数,腔室反应温度和前驱体反应时间,分析工艺条件改变对 MCP二次电子增益的影响。结果表明 ALD沉积工艺参数对 MCP二次电子增益有很大影响,使用适当的工艺参数,可得到具有高二次电子增益的 MCP。
Abstract
The overall performance of the MCP is always a key issue for device performance enhancements. Development of nano-film materials and mature preparation technology provide an excellent opportunity for the development of micro-channel plate. A layer of Al2O3 thin film was fabricated on the inner wall of MCP by ALD as the secondary electron emission layer. It can increase the secondary electron emission coefficient of channel walls, and the gain of micro-channel plate. The effect of different process conditions on the electron gain of MCP was analyzed by adjusting cycles, temperatures and reaction time of the ALD deposition process. The results show that the ALD process parameters have a great influence on the electron gain of MCP, and the MCP with high electron gain can be obtained by using the appropriate process parameters.
参考文献

[1] 黄钧良. 微通道板技术进展 (一)[J]. 红外技术, 1994, 17(1): 37-41.

    HUANG Juliang. Development of Micro-channel Plate Techno-logy(1)[J]. Infrared Technology, 1994, 17(1): 37-41.

[2] Laprade B N. Advancement in microchannel-plate technology[C]// SPIE/IS&T 1992 Symposium on Electronic Imaging: Science and Technology. International Society for Optics and Photonics, 1992: 150-178.

[3] Adams J, Manley B W. The Mechanism of Channel Electron Myltipication[J]. IEEE Transaction on Nuclear Science, 1966, B: 88-99.

[4] Butler I G, Norton T J, Airey R J, et al. Performance of a Large-area Micro-channel Plate Photon Counting Intensifier[C]//SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation. International Society for Optics and Photonics, 1994: 126-133.

[5] Mane A U, Peng Q, Wetstein M J, et al. A Novel Atomic Layer Deposition Method to Fabricate Economical and Robust Large Area Micro-channel Plates[C]//SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, 2011: 80312H-80312H-7.

[6] George S M. Atomic Layer Deposition: An Overview[J]. Chemical Reviews, 2009, 110(1): 111-131.

[7] 房丹, 唐吉龙, 魏志鹏, 等. 利用原子淀积 Al2O3对 InP光学稳定性的研究[J].红外与激光工程, 2013, 42(12): 3386-3389.

    FANG Dan, TANG Jilong, WEI Zhipeng, et al. Study on the Optical Stability of InP by Using Al2O3 in Atomic Layer Deposition[J]. Infrared and Laser Engineering, 2013, 42(12): 3386-3389.

[8] Kanaya K, Ono S, Ishigaki F. Secondary Electron Emission from Insulators[J]. Journal of Physics D: Applied Physics, 1978, 11(17): 2425.

[9] George S M, Ott A W, Klaus J W. Surface Chemistry for Atomic Layer Growth[J]. The Journal of Physical Chemistry, 1996, 100(31): 13121-13131.

[10] Scholtz J J, Dijkkamp D, Schmitz R W A. Secondary Electron Emission Properties[J]. Philips journal of research, 1996, 50(3): 375-389.

[11] Dekker A J. Secondary Electron Emission[J]. Solid State Physics, 1958, 6: 251-311.

[12] 杨永强, 段羽, 陈平, 等. 低温原子层沉积氧化铝作为有机电致发光器件的封装薄膜[J].发光学报, 2014(9): 1087-1092.

    YANG Yongqiang, DUAN Yu, CHEN Ping, et al. Deposition of Al2O3 Film Using Atomic Layer Deposition Method at Low Temperature as Encapsulation Layer for OLEDs[J]. Chinese Journal of Luminescence, 2014(9): 1087-1092.

郝子恒, 李相鑫, 张妮, 朱宇峰, 李丹. 微通道板高增益二次电子发射层制备研究[J]. 红外技术, 2018, 40(11): 1077. HAO Ziheng, LI Xiangxin, ZHANG Ni, ZHU Yufeng, LI Dan. Preparation of High Gain Secondary Electron Emission Layer for Micro-channel Plate[J]. Infrared Technology, 2018, 40(11): 1077.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!