激光与光电子学进展, 2015, 52 (11): 111407, 网络出版: 2015-10-15   

1015 nm半导体激光放大系统的实验研究 下载: 578次

Design and Characteristics of Diode Laser Amplifier System at 1015 nm
作者单位
1 华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
2 华东师范大学信息科学与技术学院, 上海 200062
摘要
报道了波长为1015 nm 的大功率单频半导体光放大器的设计与研制,实验研究了不同注入光功率和不同温度下,放大器输出光功率与注入电流的依赖关系。结果表明:当波长为1015 nm、功率约为30 mW 的种子光注入到半导体激光放大系统中,并把该放大器的注入电流增加到5 A 时,其输出的激光功率高达1600 mW,相应的放大倍数可达17.3 dB,且放大器输出功率随温度的降低而增大。此外,还观测了半导体光放大器输出功率的稳定性,发现该放大器可长时间保持稳定工作。因此,该1015 nm 激光放大系统可用于掺杂稀土离子晶体的激光冷却,四倍频后还可用于汞原子光钟的实验研究。
Abstract
The large output power semiconductor optical amplifier with single frequency developed. Output optical power of the amplifier relationship with injection of current is experimentally investigated at different seed laser powers and temperatures. The results of experiments show that the out power with injecting current of 5 A can be up to 1600 mW after injecting the seed laser with power of 30 mW at 1015 nm and the amplification factor is up to 17.3 dB. Moreover, the output power of the amplifier becomes larger as temperature decreases. The output power of semiconductor optical amplifier diode system is very stable once the system reaches thermal equilibrium. Therefore, it can be applied to laser cooling crystals doped with rare earth ions, as well as the optical lattice clock of mercury atoms after frequency quadrupling.
参考文献

[1] Hall R N, Fenner G E, Kingsley J D, et al.. Coherent light emission from GaAs junctions[J]. Phys Rev Lett, 1962, 9(9): 366-368.

[2] 潘洪刚, 于晋龙, 王文睿, 等. 基于半导体光放大器的自锁模激光器及重复频率分频现象[J]. 中国激光, 2013, 40(11): 1102006.

    Pan Honggang, Yu Jinlong, Wang Wenrui, et al.. Semiconductor optical amplifier based self- mode locking laser and phenomenon of dimidiate frequency[J]. Chinese J Lasers, 2013, 40(11): 1102006.

[3] 李秀山, 宁永强, 贾鹏, 等. 浅面浮雕矩形台面垂直腔面发射半导体激光器[J]. 中国激光, 2014, 41(12): 1202005.

    Li Xiushan, Ning Yongqiang, Jia Peng, et al.. Rectangular mesa shaped vertical cavity surface emitting laser with shallow surface relief[J]. Chinese J Lasers, 2014, 41(12): 1202005.

[4] 尚怀赢, 霍力, 吴远鹏, 等. 单偏振半导体光放大器扫频光相干成像系统[J]. 中国激光, 2014, 41(11): 1102002.

    Shang Huaiying, Huo Li, Wu Yuanpeng, et al.. Optical coherence imaging system based on a polarization- dependent semiconductor optical amplifier-enabled swept laser[J]. Chinese J Lasers, 2014, 41(11): 1102002.

[5] 刘洪力, 钱军, 徐震, 等. 用于汞原子激光冷却的深紫外激光调谐和锁频系统[J]. 中国激光, 2013, 40(9): 0902005.

    Liu Hongli, Qian Jun, Xu Zhen, et al.. A frequency tuning and locking system of a deep UV laser for laser cooling of mercury atoms[J]. Chinese J Lasers, 2013, 40(9): 0902005.

[6] Mikulla M. Tapered high- power, high- brightness diode lasers: design and performance[J]. Topics in Applied Physics, 2000, 78: 265-288.

[7] 刘永宏, 韩燕旭, 张春红, 等. 用于Rb 原子冷却系统的半导体激光放大(TPA)装置[J]. 量子光学学报, 2009, 15(1): 91-94.

    Liu Yonghong, Han Yanxu, Zhang Chunhong, et al.. Semiconductor tapered- amplified laser (TPA) set for Rb cooling system[J]. Acta Sinica Quantum Optica, 2009, 15(1): 91-94.

[8] Ferrari G, Mewes M O, Schreck F, et al.. High-power multiple- frequency narrow- linewidth laser source based on a semiconductor tapered amplifier[J]. Opt Lett, 1999, 24(3): 151-153.

[9] Xiong Y, Carlsten S M L, Repasky K. Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser[J]. Optical Engineering, 2006, 45(12): 124205.

[10] Kangara J C B, Hachtel A J, Gillette M C, et al.. Design and construction of cost-effective tapered amplifier systems for laser cooling and trapping experiments[J]. American Journal of Physics, 2014, 82(8): 805-817.

[11] Wang X, Erbert G, Wenzel H, et al.. High-power, spectrally stabilized, near-diffraction-limited 970 nm laser light source based on truncated-tapered semiconductor optical amplifiers with low confinement factors[J]. Semiconductor Science & Technology, 2011, 27(1): 15010-15019.

[12] Kintzer E S, Walpole J N, Chinn S R, et al.. High-power, strained-layer amplifiers and lasers with tapered gain regions[J]. IEEE Photonics Technology Letters, 1993, 5(6): 605-608.

[13] 魏星. 近衍射极限高功率锥形半导体激光器[D]. 吉林: 长春理工大学, 2007: 2-17.

    Wei Xing. Near Diffraction Limited High Power Semiconductor[D]. Jilin: Changchun University of Science and Technology, 2007: 2-17.

[14] 钟标. 掺Yb3+氟化物晶体激光冷却理论与实验研究[D]. 上海: 华东师范大学, 2014: 83-93.

    Zhong Biao. Laser Cooling of the Yb3+ Doped Fluoride Crystal[D]. Shanghai: East China Normal University, 2014: 83-93.

[15] Swallows M D, Loftus T H, Griffith W C, et al.. Techniques used to search for a permanent electric dipole moment of the 199Hg atom and the implications for CP violation[J]. Physical Review A, 2013, 87(1): 012102.

陈琳, 钟标, 夏勇, 郑公爵, 石艳玲, 印建平. 1015 nm半导体激光放大系统的实验研究[J]. 激光与光电子学进展, 2015, 52(11): 111407. Chen Lin, Zhong Biao, Xia Yong, Zheng Gongjue, Shi Yanling, Yin Jianping. Design and Characteristics of Diode Laser Amplifier System at 1015 nm[J]. Laser & Optoelectronics Progress, 2015, 52(11): 111407.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!