发光学报, 2018, 39 (3): 349, 网络出版: 2018-04-09  

锯齿波激励氩气介质阻挡放电的发光特性

Optical Characteristics of Saw-tooth Voltage Excited Dielectric Barrier Discharge in Argon
作者单位
河北大学物理科学与技术学院 河北省光电信息材料重点实验室, 河北 保定 071002
摘要
采用平行平板结构的微间隙介质阻挡放电装置,在锯齿波电压激励下产生了电流波形具有平台状的阶梯模式放电。研究发现,随锯齿波电压峰值的增大,放电平台的持续时间和幅值随之增加。采用光学方法对单个放电平台的时间演化进行研究,发现其放电机制属于大气压汤森放电。通过对放电的发射光谱进行采集,发现包含氮分子的第二正带系(C3Πu→B3Πu)、OH(A2∑+→X2Π)和ArⅠ的特征谱线。随锯齿波电压峰值的增大,OH(308.8 nm)谱线强度和分子振动温度增加,但电子激发温度减小。通过对ArⅠ(750.4 nm)强度进行比较,发现相同峰值电压下锯齿波激励介质阻挡放电比正弦激励介质阻挡放电产生的谱线强度更大。利用气体放电理论,对上述物理现象进行了定性解释。
Abstract
A micro-gap dielectric barrier discharge decive in a parallel plate geometry is excited by a saw-tooth voltage to produce a stepped discharge, whose current waveform presents a plateau every half voltage cycle. It is found that the duration and amplitude of the discharge plateau increase with the increasing of the peak value of the applied saw-tooth voltage. The temporal evolution in the discharge plateau is investigated through optical method. It is confirmed that the stepped discharge is in an atmospheric Townsend discharge regime. Scanning the optical emission spectrum from the discharge, it is found that the spectrum is composed of the second positive system of nitrogen molecule(C3Πu→B3Πu), OH(A2∑+→X2Π) and Ar Ⅰ. With the increasing of the peak value of the applied saw-tooth voltage, it increases for the spectral intensity of OH (308.8 nm) and the molecular vibrational temperature, while the excited electron temperature decreases. By comparing the spectral line intensity of Ar Ⅰ(750.4 nm), it is found that the spectral line intensity produced by saw-tooth wave excited dielectric barrier discharge is larger than that of sine wave excited dielectric barrier discharge under the same peak voltage. All of these physical phenomena mentioned above are analyzed qualitatively by gas discharge mechanism.
参考文献

[1] GEYTER N D, MORENT R, GENGEMBRE L, et al.. Increasing the hydrophobicity of a PP film using a helium/CF4, DBD treatment at atmospheric pressure [J]. Plasma Chem. Plasma Proc., 2008, 28(2):289-298.

[2] REHMAN F, LIU Y, ZIMMERMAN W B J. The role of chemical kinetics in using O3, generation as proxy for hydrogen production from water vapour plasmolysis [J]. Int. J. Hydrogen Energy, 2016, 41(15):6180-6192.

[3] PLAKSIN V Y, PENKOV O V, MIN K K, et al.. Exhaust cleaning with dielectric barrier discharge [J]. Plasma Sci. Technol., 2010, 12(12):688.

[4] DENG X T, SHI J J, SHAMA G, et al.. Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of Bacillus subtilis spores [J]. Appl. Phys. Lett., 2005, 87(15):153901-1-3.

[5] CHU H Y, HUANG B S. Gap-dependent transitions of atmospheric microplasma in open air [J]. Phys. Plasmas, 2011, 18(4):043501.

[6] KANAZAWA S, KOGOMA M, MORIWAKI T, et al.. Stable glow plasma at atmospheric pressure [J]. J. Phys. D: Appl. Phys., 1988, 838:189-200.

[7] MASSINES F, GHERARDI N, NAUD N, et al.. Recent advances in the understanding of homogeneous dielectric barrier discharges [J]. Eur. Phys. J. Appl. Phys., 2009, 47(2):22805.

[8] MASSINES F, RABEHI A, DECOMPS P, et al.. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier [J]. J. Appl. Phys., 1998, 83(6):2950-2957.

[9] GHERARDI N, GOUDA G, GAT E, et al.. Transition from glow silent discharge to micro-discharges in nitrogen gas [J]. Plasma Sources Sci. Technol., 2000, 9(3):340.

[10] TRUNEC D, BRABLEC A, BUCHTA J. Atmospheric pressure glow discharge in neon [J]. J. Phys. D: Appl. Phys., 2001, 34(11):1697.

[11] NAVRTIL Z, BRANDENBURG R, TRUNEC D, et al.. Comparative study of diffuse barrier discharges in neon and helium [J]. Plasma Sources Sci. Technol., 2005, 15(1):8.

[12] BRANDENBURG R, NAVRTIL Z, JNSKY' J, et al.. The transition between different modes of barrier discharges at atmospheric pressure [J]. J. Phys. D: Appl. Phys., 2009, 42(8):085208.

[13] KOZLOV K V, BRANDENBURG R, WAGNER H E, et al.. Investigation of the filamentary and diffuse mode of barrier discharges in N2/O2 mixtures at atmospheric pressure by cross-correlation spectroscopy [J]. J. Phys. D: Appl. Phys., 2005, 38(4):518-529.

[14] OSAWA N, YOSHIOKA Y. Generation of low-frequency homogeneous dielectric barrier discharge at atmospheric pressure [J]. IEEE Trans. Plasma Sci., 2012, 40(1):2-8.

[15] BOGACZYK M, SRETENOVIC' G B, WAGNER H E. Influence of the applied voltage shape on the barrier discharge operation modes in helium [J]. Eur. Phys. J. D, 2013, 67(10):212.

[16] SHAO T, ZHANG C, YU Y, et al.. Temporal evolution of nanosecond-pulse dielectric barrier discharges in open air [J]. Europhys. Lett., 2012, 97(5):504-514.

[17] YU S, PEI X, HASNAIN Q, et al.. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies [J]. Phys. Plasmas, 2016, 23(2):2.

[18] ABDELAZIZ A A, SETO T, ABDEL-SALAM M, et al.. Influence of applied voltage waveforms on the performance of surface dielectric barrier discharge reactor for decomposition of naphthalene [J]. J. Phys. D: Appl. Phys., 2015, 48:195201.

[19] LI X, NIU D, YIN Z, et al.. Numerical simulation of operation modes in atmospheric pressure uniform barrier discharge excited by a saw-tooth voltage [J]. Phys. Plasmas, 2012, 19(8):1819.

[20] 李雪辰, 楚婧娣, 鲍文婷, 等. 直流激励等离子体喷枪的发光特性研究 [J]. 光学学报, 2015, 35(7):41-46.

    LI X C, CHU J D, BAO W T, et al.. Study on the discharge characteristics of a DC-voltage excited plasma jet [J]. Acta Opt. Sinica, 2015, 35(7):41-46. (in Chinese)

[21] JIANG W M, LI J, TANG J, et al.. Prediction of nested complementary pattern in argon dielectric-barrier discharge at atmospheric pressure [J]. Sci. Rep., 2015, 5:16391.

[22] SUBLET A, DING C, DORIER J. L et al.. Atmospheric and sub-atmospheric dielectric barrier discharges in helium and nitrogen [J]. Plasma Sources Sci. Technol., 2006, 15(4):627-634.

[23] EWING D, DAMSKER K E. The use of glycerol to link DNA damage from hydroxyl radicals with the activities of DNA repair enzymes [J]. Biochem. Biophys. Res. Commun., 1995, 207:957.

[24] TANG J, JIANG W M, ZHAO W, et al.. Development of a diffuse air-argon plasma source using a dielectric-barrier discharge at atmospheric pressure [J]. Appl. Phys. Lett., 2013, 102:033503.

李雪辰, 吴凯玥, 张琦, 楚婧娣, 王彪, 贾鹏英. 锯齿波激励氩气介质阻挡放电的发光特性[J]. 发光学报, 2018, 39(3): 349. LI Xue-chen, WU Kai-yue, ZHANG Qi, CHU Jing-di, WANG Biao, JIA Peng-ying. Optical Characteristics of Saw-tooth Voltage Excited Dielectric Barrier Discharge in Argon[J]. Chinese Journal of Luminescence, 2018, 39(3): 349.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!