光电工程, 2016, 43 (10): 12, 网络出版: 2016-12-08   

多帧背景差与Cauchy模型融合的目标检测

Target Detection Method Based on Multi-frame Background Subtractionand Cauchy Model
作者单位
1 中国民用航空总局第二研究所 科研开发中心,成都 610041
2 电子科技大学 电子工程学院,成都 611731
摘要
为有效解决复杂监视场景中快速、准确检测运动目标,提出一种多帧背景差与柯西(Cauchy)模型融合的目标检测方法。该方法首先借鉴Surendra 背景模型的思路进行改进,采用多帧背景差法获取干净的背景图像,然后利用实时的视频图像和当前的背景图像进行绝对差分处理,最后通过Cauchy 模型对整幅绝对差分图像上的点进行背景点和前景点判别,实现对复杂监视场景中目标的准确检测。针对车辆、行人等不同对象的监控场景下进行实验,验证了本文方法不仅能够有效地抑制噪声及伪目标的干扰,而且能够快速、准确地分割出前景目标。
Abstract
To effectively solve the problem of fast and accurate detection of moving targets in complex surveillance scene, target detection method based on multi-frame background subtraction and Cauchy model is proposed. Firstly, Surendra background model is improved to get clean background image. Then, system judges the current pixel on the absolute differential image belonging to the target areas or background areas by the absolute difference between the current background frame and the real-time video frame. Finally, through the Cauchy distribution model of the pixel, the aim of the moving target detection is realized in complex surveillance scene. The experiment on the vehicle, pedestrian and other object shows that the method can not only suppress the noise and interference of false target, but also can segment foreground target rapidly and accurately.
参考文献

[1] SHEN Yiran,HU Wen,YANG Mingrui. Real-time and robust compressive background subtraction for embedded camera networks [J]. IEEE Transactions on Mobile Computing(S1536-1233),2016,15(2):406-418.

[2] 黄凯奇,陈晓棠,康运锋,等. 智能视频监控技术综述 [J]. 计算机学报,2015,38(6):1093-1115.

    HUANG Kaiqi,CHEN Xiaotang,KANG Yunfeng,et al. Intelligent visual surveillance:A review [J]. Chinese Journal of Computer,2015,38(6):1093-1115.

[3] Girshick R,Donahue J,Darrell T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation [J]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(S0056-1200),2014,2(6):580-587.

[4] YANG Mingyang. A moving objects detection algorithm in video sequence [J]. 2014 International Audio,Language and Image Processing(S4799-3902),2014,10(11):410-413.

[5] TAN Yihua,WU Dan,SUN Airong,et al. Adaptive and fast target detection in high-resolution SAR image [J]. 2014 IEEE International Geoscience and Remote Sensing Symposium(S2153-6996),2014,5(6):470-473.

[6] 周杰,郭立君,张荣. 基于集群性特征的异常行为检测 [J]. 光电工程,2015,42(9):35-40.

    ZHOU Jie,GUO Lijun,ZHANG Rong. Abnormal behavior detection based on collectiveness feature [J]. Opto-Electronic Engineering,2015,42(9):35-40.

[7] Kim S,Yang D,Park H. A disparity-based adaptive multi-homography method for moving target detection based on global motion compensation [J]. Circuits and Systems for Video Technology(S1051-8215),2014,1(1):1-5.

[8] Omar E,Driss M,Hamid T. Motion detection based on the combining of the background subtraction and spatial color information [J]. IEEE Intelligent Systems and Computer Vision(S4799-7510),2015,5(1):1-4.

[9] 王正宁,刘昌忠,王娟,等. 一种双门限场面运动目标检测系统:中国,201120089757 [P]. 2011-11-16.

    WANG Zhengning,LIU Changzhong,WANG Juan,et al. A double-threshold moving target detection system:China, 201120089757 [P]. 2011-11-16.

[10] Deepak K,Sukadev M. Detection of moving objects using fuzzy color difference histogram based background subtraction [J]. IEEE Signal Processing Letters(S1070-9908),2016,23(1):45-49.

[11] 田洪金,战荫伟. 基于自适应分块和SSIM 的运动目标检测 [J]. 计算机科学,2014,41(2):119-122.

    TIAN Hongjin,ZHAN Yinwei. Moving object detection based on adaptive image blocking and SSIM [J]. Computer Science, 2014,41(2):119-122.

[12] Hasan S,Sen-ching S. Background subtraction for static & moving camera [J]. 2015 IEEE International Conference on Image Processing(S1565-4138),2015,12(12):4530-4534.

王凯, 吴敏, 姚辉, 杨樊, 张翔. 多帧背景差与Cauchy模型融合的目标检测[J]. 光电工程, 2016, 43(10): 12. WANG Kai, WU Min, YAO Hui, YANG Fan, ZHANG Xiang. Target Detection Method Based on Multi-frame Background Subtractionand Cauchy Model[J]. Opto-Electronic Engineering, 2016, 43(10): 12.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!