光学 精密工程, 2017, 25 (9): 2413, 网络出版: 2017-10-30  

基于挤压-剪切模式的高转矩磁流变离合器设计与实验

Design and experiment of high-torque MR clutch in compression-shear mode
作者单位
1 浙江师范大学工学院, 浙江 金华 321004
2 浙江飞亚电梯有限公司技术部, 浙江 金华 321002
摘要
本文设计了一种基于挤压-剪切混合模式磁流变离合器, 建立了用于测试其传动性能的实验装置。首先, 介绍了磁流变离合器的工作原理; 接着, 利用ANSYS有限元仿真分析软件分析了磁路的磁感应强度分布特性; 最后, 搭建了磁流变离合器的传动性能实验测试装置, 测试了磁流变离合器的静态传动性能和动态响应特性。实验结果表明: 转速对磁流变离合器的转矩影响不明显, 而电流和挤压应力对磁流变离合器转矩的影响比较大, 转矩随电流及挤压应力的增加而增加; 在1.0 A的电流和40 r/min的转速下, 挤压应力为150 kPa时, 挤剪式磁流变离合器的转矩可达到146 Nm, 比剪切模式下的磁流变离合器转矩提高了约6.6倍; 响应时间常数先随电流(电流小于0.6 A)的增加而减小, 而后受电流影响不明显; 响应时间随挤压应力和转速的增加而下降; 总体接合响应时间在77 ms以内。所研制的基于挤压-剪切混合模式的磁流变离合器传动性能良好, 控制灵敏。
Abstract
A kind of magnetorheological (MR) clutch in compression-shear mode was designed and an experiment device was fabricated to test its transmission performance. Firstly, working principle of MR clutch was introduced. Secondly, distribution characteristic of magnetic flux intensity of magnetic circuit was analyzed with ANSYS finite elements analysis software. Finally, experiment testing device was established to test static transmission performance and dynamic response characteristics of MR clutch. Experiment result indicates that influence of rotational speed on torque of MR clutch is not obvious, while influence of current and normal stress on torque of MR clutch is great. Moreover, the torque increases with increase of current and normal stress; torque of MR clutch in compression-shear mode can reach 146 Nm, increasing by about 6.6 times than that in only model of shearing when mormal stress is 150 kPa under current of 1.0 A and rotational speed of 40r/min; response time constant decreases with increase of the current (current is less than 0.6 A), later current influence is not obvious; response time decreases with increase of normal stress and rotational speed; overall connection response time is within 77 ms. Transmission performance of the developed MR clutch in compression-shear mode is well and control is sensitive.
参考文献

[1] 马然, 朱思洪, 梁林, 等.磁流变减振器建模与试验[J].机械工程学报, 2014, 50(4): 135-141.

    MA R, ZHU S H, LIANG L, et al.. Modelling and testing of magnetorheological damper [J].Journal of Mechanical Engineering, 2014, 50(4): 135-141.(in Chinese)

[2] 潘公宇, 杨海, 徐腾跃, 等.磁流变液阻尼器试验与建模研究[J].振动与冲击, 2015, 34(6): 36-40.

    PAN G Y, YANG H, XU T Y, et al.. Tests and modeling for magneto-rheological(MR) dampers [J].Journal of Vibration and Shock, 2015, 34(6): 36-40.(in Chinese)

[3] 王鸿云, 高春甫, 阚君武, 等. 磁场作用下磁流变液的挤压与拉伸特性[J].光学 精密工程, 2011, 19(4): 850-856.

    WANG H Y, GAO CH F, KAN J W, et al.. Compressive and tensive characteristics of magnetorheological fluid under magnetic fields [J].Opt. Precision Eng., 2011, 19(4): 850-856.(in Chinese)

[4] 陈德民, 张宏, 蔡青格, 等.车用磁流变离合器设计与性能实验[J]. 机械强度, 2016, 38(1): 49-53.

    CHEN D M, ZHANG H, CAI Q G, et al.. Design and performance test of automotive magneto-rheological fluid clutch [J]. Journal of Mechanical Strength, 2016, 38(1): 49-53.(in Chinese)

[5] 李龙响, 郑立功, 邓伟杰, 等.应用四轴联动磁流变机床加工曲面[J].光学 精密工程, 2015, 23(10): 2819-2826.

    LI L X, ZHENG L G, DENG W J, et al.. Magnetorheological finishing for curve surface based on 4-axis machine [J]. Opt. Precision Eng., 2015, 23(10): 2819-2826.(in Chinese)

[6] 宋辞, 戴一帆, 彭小强, 等. 光学镜面磁流变抛光的后置处理[J].光学 精密工程, 2010, 18(8): 1715-1721.

    SONG C, DAI Y F, PENG X Q, et al.. Post processing for magnetorheological finishing of optical mirrors [J]. Opt. Precision Eng., 2010, 18(8): 1715-1721.(in Chinese)

[7] 石峰, 戴一帆, 彭小强, 等. 高精度光学表面磁流变修形[J]. 光学 精密工程, 2009, 17(8): 1859-1864.

    SHI F, DAI Y F, PENG X Q, et al.. Magnetorheological finishing for high-precision optical surface [J]. Opt. Precision Eng., 2009, 17(8): 1859-1864.(in Chinese)

[8] LAMPE D, THESS A, DOTZAUER C. MRF clutch design considerations and performance [C]. The 6th International Conference on New Actuators. Bremen, Germany, 1998, 449-452.

[9] KAVLICOGLU B, GORDANINEJAD F, EVRENSEL C A, et al.. A high-torque magnetorheological fluid clutch[C]. Proceedings of SPIE Conference on Smart Materials and Structures, San Diego, 2002: 1-8.

[10] KIKUCHI T, ODA K, YAMAGUCHI S, et al.. Leg-robot with MR clutch to realize virtual spastic movements [J].Journal of Intelligent Material Systems and Structures, 2010, 21(15): 1523-1529.

[11] KIM E S, CHOI S B, PARK Y G, et al.. Temperature control of an automotive engine cooling system utilizing a magneto-rheological fan clutch [J].Smart Mater. Struct, 2010, 19(10): 1-10.

[12] KIELAN P, KOWOL P, PILCH Z. Conception of the electronic controlled magnetorheological clutch [J].PRZEGLAD ELEKTROTECHNICZNY, 2011, 87(3): 93-95.

[13] 徐国梁, 陈锵, 江万权, 等. 径向自加压磁流变液离合器, 中国: CN1331389[P].2002.

    XU G L, CHEN Q, JIANG W Q, et al.. The MRF clutch of radial pressure, China: CN1331389 [P]. 2002.(in Chinese)

[14] 邹刚. 杯状磁流变液离合器的性能测试与优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    ZOU G.The performance testing and design of magneto-rheological fluid clutch [D].Harbin: Harbin Institute of Technology, 2009.(in Chinese)

[15] 胡红生, 王炅, 崔亮, 等. 磁流变风扇离合器结构设计与可控性分析[J].南京理工大学学报(自然科学版), 2010, 34(3): 342-346.

    HU H SH, WANG J, CUI L, et al.. Structure design and controllability analysis of magnetorheological fan clutch [J]. Journal of Nanjing University of Science and Technology(Natural Science), 2010, 34(3): 342-346.(in Chinese)

[16] WANG D M, TIAN Z Z, MENG Q R, et al.. Development of a novel two-layer multiplate magnetorheological clutch for high-power applications [J]. Smart Materials and Structures, 2013, 22(8): 1-13.

[17] ZHANG X Z, GONG X L, ZHANG P Q. Study on the mechanism of the squeeze-strengthen effect in magnetorheological fluids [J].Journal of Applied Physics, 2004, 96(4): 2359-2364.

[18] TANG X L, ZHANG X Z, TAO R. Structure-enhanced yield strength of MR fluids [J].Journal of Applied Physics, 2000, 87(5): 2634-2638.

[19] TAO R. Super-strong magnetorheological fluids [J].Journal of Physics: Condensed Matter, 2001, 13: 979-999.

[20] WANG H Y, BI CH, KAN J W, et al.. The mechanical property of magnetorheological fluid under compression, elongation, and shearing [J]. Journal of Intelligent Material Systems and Structures, 2011, 22(7): 811-816.

[21] 王鸿云, 郑惠强, 李泳鲜.基于挤压模式下磁流变液力学行为的实验研究[J].仪器仪表学报, 2009, 30(4): 848-851.

    WANG H Y, ZHENG H Q, LI Y X. Mechanical behavior of magnetorheological fluid under compression mode [J].Chinese Journal of Scientific Instrument, 2009, 30(4): 848-851.(in Chinese)

[22] KIKUCHI T, IKEDA K, OTSUKI K, et al.. Compact MR fluid clutch device for human-friendly actuator [J].J. Phys.: Conf. Ser, 2009, 149: 012059.

[23] Lord Corporation 2003 Magneto-Rheological(MR) Overview [EB].http: //lord.com/products-and-solutions/magnetorheological-(mr).xml.

[24] CHEN K K, TIAN Y, SHAN L, et al.. Transient response of sheared magnetic powder excited by a stepwise magnetic field and its comparison with ER and MR fluids[J]. Smart Mater. Struct, 2013, 22(11): 097001.

[25] KAVLICOGLU N C, KAVLICOGLU B M, LIU Y M, et al.. Response time and performance of a high-torque magneto-rheological fluid limited slip differential clutch[J].Smart Mater. Struct, 2007, 16(1): 149-159.

王鸿云, 毕成, 赵爽, 阚君武, 高春甫, 贺新升. 基于挤压-剪切模式的高转矩磁流变离合器设计与实验[J]. 光学 精密工程, 2017, 25(9): 2413. WANG Hong-yun, BI Cheng, ZHAO Shuang, KAN Jun-wu, GAO Chun-fu, HE Xin-sheng. Design and experiment of high-torque MR clutch in compression-shear mode[J]. Optics and Precision Engineering, 2017, 25(9): 2413.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!