人工晶体学报, 2021, 50 (2): 290, 网络出版: 2021-03-30  

N型掺杂ZnSe/BeTe Ⅱ型量子阱中空间间接带电激子跃迁发光的直接证据

Direct Evidence of Spatially Indirect Charged Exciton Transition Photoluminescence in N-doped ZnSe/BeTe Type-Ⅱ Quantum Wells
作者单位
山东大学微电子学院,济南 250100
引用该论文

屈尚达, 冀子武. N型掺杂ZnSe/BeTe Ⅱ型量子阱中空间间接带电激子跃迁发光的直接证据[J]. 人工晶体学报, 2021, 50(2): 290.

QU Shangda, JI Ziwu. Direct Evidence of Spatially Indirect Charged Exciton Transition Photoluminescence in N-doped ZnSe/BeTe Type-Ⅱ Quantum Wells[J]. Journal of Synthetic Crystals, 2021, 50(2): 290.

参考文献

[1] LAMPERT M A. Mobile and immobile effective-mass-particle complexes in nonmetallic solids[J]. Physical Review Letters, 1958, 1(12): 450.

[2] POKLONSKI N A, DZERAVIAHA A N, VYRKO S A, et al. Radiative decay of a trion in a quantum well of a semiconductor heterostructure[J]. Journal of Applied Spectroscopy, 2017, 84(4): 611-619.

[3] EMMANUELE R P A, SICH M, KYRIIENKO O, et al. Highly nonlinear trion-polaritons in a monolayer semiconductor[J]. Nature Communications, 2020, 11(1): 3589.

[4] ANTOLINEZ F V, RABOUW F T, ROSSINELLI A A, et al. Trion emission dominates the low-temperature photoluminescence of CdSe nanoplatelets[J]. Nano Letters, 2020, 20(8): 5814-5820.

[5] MUND J, FARENBRUCH A, YAKOVLEV D R, et al. Optical second- and third-harmonic generation on excitons in ZnSe/BeTe quantum wells[J]. Physical Review B, 2020, 102(12): 125433.

[6] SHEN R, KOJIMA E, AKIMOTO R, et al. Anisotropic exciton and charged exciton dichroic photoluminescence in undoped ZnSe/BeTe type-II quantum wells in magnetic fields[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42(4): 1172-1175.

[7] DEBUS J, MAKSIMOV A A, DUNKER D, et al. Heating of the Mn spin system by photoexcited holes in type-II (Zn, Mn)Se/(Be, Mn)Te quantum wells[J]. Physica Status Solidi (B), 2014, 251(9): 1694-1699.

[8] FILATOV E V, MAKSIMOV A A, TARTAKOVSKII I I, et al. Effect of the external electric field on the kinetics of recombination of photoexcited carriers in a ZnSe/BeTe type II heterostructure[J]. JETP Letters, 2012, 94(12): 858-862.

[9] ZEIRI N, SFINA N, ABDI-BEN NASRALLAH S, et al. Intersubband resonant enhancement of the nonlinear optical properties in asymmetric (CdS/ZnSe)/X-BeTe based quantum wells[J]. Optical Materials, 2013, 35(5): 875-880.

[10] JI Z W, YAMAMOTO H, MINO H, et al. Spin dependent transitions of charged excitons in type-II quantum wells[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22(1/2/3): 632-635.

[11] 冀子武,鲁 云,陈锦祥,等.调制掺杂ZnSe/BeTe Ⅱ型量子阱结构中的内秉电场和新型带电激子[J].物理学报,2008,57(2):1214-1219.

[12] JI Z W, MINO H, OTO K, et al. Electric- and magnetic-field effects on radiative recombination in modulation n-doped ZnSe/BeTe type-II quantum wells[J]. Semiconductor Science and Technology, 2005, 21(1): 87.

[13] MINO H, FUJIKAWA A, AKIMOTO R, et al. What is the origin of very strong photoluminescence in ZnSe/BeTe superlattices at liquid helium temperature?[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22(1/2/3): 640-643.

[14] JI Z W, TAKEYAMA S, MINO H, et al. Spatially direct charged exciton photoluminescence in undoped ZnSeBeTe type-II quantum wells[J]. Applied Physics Letters, 2008, 92(9): 093107.

[15] JI Z W, MINO H, OTO K, et al. Type-I interband transition in undoped ZnSe/BeTe type-II quantum wells under high excitation density[J]. Semiconductor Science and Technology, 2009, 24(9): 095016.

[16] BUTOV L V, FILIN A I. Anomalous transport and luminescence of indirect excitons in AlAs/GaAs coupled quantum wells as evidence for exciton condensation[J]. Physical Review B, 1998, 58(4): 1980.

[17] SANVITTO D, HOGG R A, SHIELDS A J, et al. Rapid radiative decay of charged excitons[J]. Physical Review B, 2000, 62(20): r13294.

[18] SHIELDS A J, PEPPER M, RITCHIE D A, et al. Quenching of excitonic optical transitions by excess electrons in GaAs quantum wells[J]. Physical Review. B, Condensed Matter, 1995, 51(24): 18049-18052.

[19] WAGNER V, BECKER M, WEBER M, et al. Raman and electroreflectance analysis of internal electric fields in ZnSe[J]. Thin Solid Films, 2000, 364(1/2): 119-123.

[20] ZAITSEV S V, MAKSIMOV A A, KULAKOVSKII V D, et al. Interface properties and in-plane linear photoluminescence polarization in highly excited type-II ZnSe/BeTe heterostructures with equivalent and nonequivalent interfaces[J]. Journal of Applied Physics, 2002, 91(2): 652-657.

[21] WALSH, MAZURUK, BENZAQUEN. Raman spectrum of a ZnSe/GaAs heterostructure[J]. Physical Review B, Condensed Matter, 1987, 36(5): 2883-2885.

[22] FINKELSTEIN G, BAR-JOSEPH I. Charged excitons in GaAs quantum wells[C].The Ⅳ International Conference on Optics of Excitons in Confined Systems, Cortona, Nuovo Cim- ento Ⅱ, 1995 17(11): 1239

屈尚达, 冀子武. N型掺杂ZnSe/BeTe Ⅱ型量子阱中空间间接带电激子跃迁发光的直接证据[J]. 人工晶体学报, 2021, 50(2): 290. QU Shangda, JI Ziwu. Direct Evidence of Spatially Indirect Charged Exciton Transition Photoluminescence in N-doped ZnSe/BeTe Type-Ⅱ Quantum Wells[J]. Journal of Synthetic Crystals, 2021, 50(2): 290.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!