人工晶体学报, 2021, 50 (2): 290, 网络出版: 2021-03-30  

N型掺杂ZnSe/BeTe Ⅱ型量子阱中空间间接带电激子跃迁发光的直接证据

Direct Evidence of Spatially Indirect Charged Exciton Transition Photoluminescence in N-doped ZnSe/BeTe Type-Ⅱ Quantum Wells
作者单位
山东大学微电子学院,济南 250100
摘要
本文研究了N型掺杂ZnSe/BeTe/ZnSe Ⅱ型量子阱空间间接发光谱的外加电场依赖性。实验结果表明,其发光谱只显示了一个线性偏振度较低的发光峰。这是由于掺杂电子屏蔽了Ⅱ型量子阱中的内秉电场,并使得两个ZnSe阱层具有相同的势。同时该发光谱具有反玻耳兹曼(inverse-Boltzmann)分布,并且线型和线性偏振度在整个栅极电压变化范围内没有显示明显改变。然而,其光谱积分强度却显著地依赖栅极电压的极性变化:在正栅极电压范围内(7~0 V)其光谱积分强度几乎是一个常数,但随着负栅极电压的增加(-1~-7 V),其光谱积分强度却显著降低。这些行为显示了该样品的空间间接发光谱具有负的带电激子的特征。这个常数的光谱积分强度被解释为掺杂层对外加电场的屏蔽,而这个显著降低的光谱积分强度则被归因于外加电场对掺杂电子的排斥(致使激光激发区域内的电子浓度降低),从而导致了负带电激子数量的减少。此外,本文也初步探讨了该空间间接带电激子的可能构成模型。
Abstract
Applied electric field dependence of spatially indirect luminescence spectra of N-doped ZnSe/BeTe/ZnSe type-Ⅱ quantum wells was studied. Experimental results indicate that each of the luminescence spectra exhibits a main luminescence peak with a lower linear polarization degree. This phenomenon can be attributed to the equalizing potential of both wells, which is due to the screening of the built-in electric field caused by the doped electrons in the structure. Meanwhile, each of the luminescence spectra exhibits an asymmetry peak with an inverse-Boltzmann line-shape, and the line-shape and linear polarization degree remain unchanged within the entire voltage range. However, the integrated luminescence intensity depends strikingly on various external voltages: with changing the positive gate voltage (in the range of +7 V to 0 V), the integrated luminescence intensity almost maintains a constant, but with increasing negative gate voltage (-1 V to -7 V), the integrated luminescence intensity reduces significantly. These behaviors indicate that the spatially indirect luminescence spectra show a characteristic feature for a negatively charged exciton transition. The constant integrated luminescence intensity is explained as screening of the applied electric field with the doped layer, while the significantly reduced integrated luminescence intensity is ascribed to excitation of doping electrons by applied electric field (leading to a decrease in the electron concentration in the region excited by laser), thus resulting in a reduction in the number of negatively charged exciton. In addition, the possible particle configuration of the spatially indirect negatively charged exciton was also explored.
参考文献

[1] LAMPERT M A. Mobile and immobile effective-mass-particle complexes in nonmetallic solids[J]. Physical Review Letters, 1958, 1(12): 450.

[2] POKLONSKI N A, DZERAVIAHA A N, VYRKO S A, et al. Radiative decay of a trion in a quantum well of a semiconductor heterostructure[J]. Journal of Applied Spectroscopy, 2017, 84(4): 611-619.

[3] EMMANUELE R P A, SICH M, KYRIIENKO O, et al. Highly nonlinear trion-polaritons in a monolayer semiconductor[J]. Nature Communications, 2020, 11(1): 3589.

[4] ANTOLINEZ F V, RABOUW F T, ROSSINELLI A A, et al. Trion emission dominates the low-temperature photoluminescence of CdSe nanoplatelets[J]. Nano Letters, 2020, 20(8): 5814-5820.

[5] MUND J, FARENBRUCH A, YAKOVLEV D R, et al. Optical second- and third-harmonic generation on excitons in ZnSe/BeTe quantum wells[J]. Physical Review B, 2020, 102(12): 125433.

[6] SHEN R, KOJIMA E, AKIMOTO R, et al. Anisotropic exciton and charged exciton dichroic photoluminescence in undoped ZnSe/BeTe type-II quantum wells in magnetic fields[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42(4): 1172-1175.

[7] DEBUS J, MAKSIMOV A A, DUNKER D, et al. Heating of the Mn spin system by photoexcited holes in type-II (Zn, Mn)Se/(Be, Mn)Te quantum wells[J]. Physica Status Solidi (B), 2014, 251(9): 1694-1699.

[8] FILATOV E V, MAKSIMOV A A, TARTAKOVSKII I I, et al. Effect of the external electric field on the kinetics of recombination of photoexcited carriers in a ZnSe/BeTe type II heterostructure[J]. JETP Letters, 2012, 94(12): 858-862.

[9] ZEIRI N, SFINA N, ABDI-BEN NASRALLAH S, et al. Intersubband resonant enhancement of the nonlinear optical properties in asymmetric (CdS/ZnSe)/X-BeTe based quantum wells[J]. Optical Materials, 2013, 35(5): 875-880.

[10] JI Z W, YAMAMOTO H, MINO H, et al. Spin dependent transitions of charged excitons in type-II quantum wells[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22(1/2/3): 632-635.

[11] 冀子武,鲁 云,陈锦祥,等.调制掺杂ZnSe/BeTe Ⅱ型量子阱结构中的内秉电场和新型带电激子[J].物理学报,2008,57(2):1214-1219.

[12] JI Z W, MINO H, OTO K, et al. Electric- and magnetic-field effects on radiative recombination in modulation n-doped ZnSe/BeTe type-II quantum wells[J]. Semiconductor Science and Technology, 2005, 21(1): 87.

[13] MINO H, FUJIKAWA A, AKIMOTO R, et al. What is the origin of very strong photoluminescence in ZnSe/BeTe superlattices at liquid helium temperature?[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22(1/2/3): 640-643.

[14] JI Z W, TAKEYAMA S, MINO H, et al. Spatially direct charged exciton photoluminescence in undoped ZnSeBeTe type-II quantum wells[J]. Applied Physics Letters, 2008, 92(9): 093107.

[15] JI Z W, MINO H, OTO K, et al. Type-I interband transition in undoped ZnSe/BeTe type-II quantum wells under high excitation density[J]. Semiconductor Science and Technology, 2009, 24(9): 095016.

[16] BUTOV L V, FILIN A I. Anomalous transport and luminescence of indirect excitons in AlAs/GaAs coupled quantum wells as evidence for exciton condensation[J]. Physical Review B, 1998, 58(4): 1980.

[17] SANVITTO D, HOGG R A, SHIELDS A J, et al. Rapid radiative decay of charged excitons[J]. Physical Review B, 2000, 62(20): r13294.

[18] SHIELDS A J, PEPPER M, RITCHIE D A, et al. Quenching of excitonic optical transitions by excess electrons in GaAs quantum wells[J]. Physical Review. B, Condensed Matter, 1995, 51(24): 18049-18052.

[19] WAGNER V, BECKER M, WEBER M, et al. Raman and electroreflectance analysis of internal electric fields in ZnSe[J]. Thin Solid Films, 2000, 364(1/2): 119-123.

[20] ZAITSEV S V, MAKSIMOV A A, KULAKOVSKII V D, et al. Interface properties and in-plane linear photoluminescence polarization in highly excited type-II ZnSe/BeTe heterostructures with equivalent and nonequivalent interfaces[J]. Journal of Applied Physics, 2002, 91(2): 652-657.

[21] WALSH, MAZURUK, BENZAQUEN. Raman spectrum of a ZnSe/GaAs heterostructure[J]. Physical Review B, Condensed Matter, 1987, 36(5): 2883-2885.

[22] FINKELSTEIN G, BAR-JOSEPH I. Charged excitons in GaAs quantum wells[C].The Ⅳ International Conference on Optics of Excitons in Confined Systems, Cortona, Nuovo Cim- ento Ⅱ, 1995 17(11): 1239

屈尚达, 冀子武. N型掺杂ZnSe/BeTe Ⅱ型量子阱中空间间接带电激子跃迁发光的直接证据[J]. 人工晶体学报, 2021, 50(2): 290. QU Shangda, JI Ziwu. Direct Evidence of Spatially Indirect Charged Exciton Transition Photoluminescence in N-doped ZnSe/BeTe Type-Ⅱ Quantum Wells[J]. Journal of Synthetic Crystals, 2021, 50(2): 290.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!