激光技术, 2018, 42 (4): 525, 网络出版: 2018-08-29   

磁场激励下焊接缺陷磁光成像特征分析

Analysis of magneto-optical imaging characteristics of weld defects under magnetic field excitation
作者单位
广东工业大学 广东省焊接工程技术研究中心, 广州 510006
摘要
为了研究磁场激励下焊接缺陷磁光成像特征, 以激光焊低碳钢板为试验对象, 采用恒定磁场和50Hz交变磁场对焊接缺陷进行励磁, 并由磁光成像传感器实时获取焊接缺陷区域磁场分布, 进行了理论分析和实验验证。取得了恒定磁场和交变磁场励磁下厚度分别为1mm, 2mm和3mm低碳钢(Q235)焊接缺陷的磁光图像, 并与COMSOL模拟结果进行对比;通过加权平均图像融合技术将交变磁场中获得的焊接缺陷磁光图像进行融合。结果表明, 与恒定磁场励磁相比, 采用交变励磁获得的焊接缺陷信息更加准确、快速和完整, 并且有效避免了焊接缺陷信息的遗漏。此研究为提高焊接缺陷检测效率提供了依据。
Abstract
In order to study the characteristics of magnetic-optical images of weld defects excited by magnetic field, low carbon steel of laser welding was used as test object and the welding defects were excited by constant magnetic field and 50Hz alternating magnetic field. Real-time magnetic field distribution of welding defect area was obtained by magnetic-optical imaging sensor. Through theoretical analysis and experimental verification, the magneto-optic images of welding defects of low carbon steel (Q235) of thickness of 1mm, 2mm and 3mm with constant magnetic field and alternating magnetic field were obtained, and then, were compared with COMSOL simulation results. The weighted average image fusion technique was used to fuse the magnetic-optical images of welding defects in the alternating magnetic field. The results show that, compared with the excitation of constant magnetic field, the welding defect information obtained by the alternating excitation is more accurate, fast and complete, and avoids the omission of welding defect information effectively. This study provides the basis for improving the detection efficiency of welding defects.
参考文献

[1] ZHANG Y L, ZHANG H Ch, ZHAO J X, et al. Review of non-destructive testing for remanufacturing of high end equipment[J]. Journal of Mechanical Engineering, 2013, 53(7): 80-90(in Chinese).

[2] KOSCHNY M, LINDNER M. Magneto-optical sensors accurately analyze magnetic field distribution of magnetic materials[J]. Advanced Materials & Processes, 2012, 170(2): 13-16.

[3] GAO X D, CHEN Y Q, YOU D Y, et al. Detection of micro gap weld joint by using magneto-optical imaging and Kalman filtering compensated with RBF neural network[J]. Mechanical Systems & Signal Processing, 2017, 84:570-583.

[4] GAO X D, WU J J. Approach of detecting and tracking micro weld joint based on magneto optical imaging [J]. Journal of Mechanical Engineering, 2015, 51(4):71-77(in Chinese).

[5] HU X Ch, LUO F L, HE B Z, et al. Pulsed alternating current field measurement technique for defect identification and quantification [J]. Journal of Mechanical Engineering, 2011, 47(4):17-22 (in Chinese).

[6] GAO X D, LAN Ch Zh, YOU D Y, et al. Weldment nondestructive testing using magneto-optical imaging induced by alternating magnetic field[J]. Journal of Nondestructive Evaluation, 2017, 36(3):55.

[7] DENG Y, LIU X, UDPA L. Magneto-optic imaging for aircraft skins inspection: a probability of detection study of simulated and experimental image data[J]. IEEE Transactions on Reliability, 2011, 61(4): 1-8.

[8] RICHERT H, SCHMIDT H, LINDNER S, et al. Dynamic magneto-optical imaging of domains in grain oriented electrical steel[J]. Steel Research, 2016, 87(2): 232-240.

[9] GAO X D, LI G H, XIAO Zh L, et al. Detection and classification of welded defects by magneto-optical imaging based on multi-scale wavelet[J]. Optics and Precision Engineering, 2016, 24(4): 930-936(in Chinese).

[10] CHEN Y H, ZHOU Z F, YIN B B. Study on magneto optical/eddy current imaging system for real time testing [J]. Optics and Precision Engineering, 2006, 14(5): 797-801(in Chinese).

[11] LE M, LEE J, SHOJI T. A simulation of magneto-optical eddy current imaging[J]. NDT&E International, 2011, 44(8): 783-788.

[12] GAO X D, HUANG G X, XIAO Zh L, et al. Micro weld detection based on magneto-optical imaging and wavelet multi-scale fusion[J]. Transactions of the China Welding Institution, 2016, 37(4):1-4(in Chinese).

[13] HAGHIGHAT M B A, AGHAGOLZADEH A, SEYEDARABI H. Multi-focus image fusion for visual sensor networks in DCT domain [J]. Computers & Electrical Engineering, 2011, 37(5):789-797.

[14] PRAKASH O, KUMAR A, KHARE A. Pixel-level image fusion scheme based on steerable pyramid wavelet transform using absolute maximum selection fusion rule[C]//International Conference on Issues and Challenges in Intelligent Computing Techniques. New York, USA:IEEE, 2014:765-770.

[15] ZHENG W, SUN X Q, LI Zh. Image fusion based on Shearlet transform and region characteristics[J]. Laser Technology, 2015, 39(1):50-56(in Chinese).

[16] LI H H, GUO L, LIU H. Research on image fusion based on the second generation curvelet transform [J]. Acta Photonica Sinica, 2006, 26(5): 657-662(in Chinese).

[17] GAO Y, WANG A M, WANG F H, et al. Application of improved wavelet transform algorithm in image fusion[J]. Laser Technology, 2013, 37(5):690-695(in Chinese).

[18] ZHU P, LIU Z Y, HUANG Zh H. Infrared polarization and intensity image fusion based on dual-tree complex wavelet transform and sparse representation[J/OL].(2017-05-08)[2017-11-07].http://kns.cnki.net/kcms/detail/61.1235.O4.20170508.1426.116.html(in Chinese).

马女杰, 高向东, 周晓虎, 张艳喜. 磁场激励下焊接缺陷磁光成像特征分析[J]. 激光技术, 2018, 42(4): 525. MA Nüjie, GAO Xiangdong, ZHOU Xiaohu, ZHANG Yanxi. Analysis of magneto-optical imaging characteristics of weld defects under magnetic field excitation[J]. Laser Technology, 2018, 42(4): 525.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!