激光与光电子学进展, 2019, 56 (17): 170605, 网络出版: 2019-09-05   

3 μm中红外稀土掺杂光纤激光器研究进展 下载: 2285次特邀综述

Research Progress of Mid-Infrared Rare Earth Ion-Doped Fiber Lasers at 3 μm
作者单位
厦门大学电子工程系, 福建 厦门 361005
图 & 表

图 1. Er3+简化能级跃迁图

Fig. 1. Simplified energy-level transition diagram of Er3+

下载图片 查看原文

图 2. Ho3+简化能级跃迁图

Fig. 2. Simplified energy-level transition diagram of Ho3+

下载图片 查看原文

图 3. Dy3+简化能级跃迁图

Fig. 3. Simplified energy-level transition diagram of Dy3+

下载图片 查看原文

图 4. 基于黑磷饱和吸收体的2.8 μm脉冲全光纤激光器[98]

Fig. 4. 2.8 μm pulsed all-fiber laser based on black phosphorus saturable absorber[98]

下载图片 查看原文

图 5. 基于NPR技术的3 μm锁模运转Ho3+/Pr3+共掺光纤激光器[134]。(a)激光器结构;(b) 3 μm锁模激光光谱;(c) 3 μm锁模激光脉冲自相关后的序列

Fig. 5. 3 μm mode-locked Ho3+/Pr3+ co-doped fiber laser based on NPR technique[134]. (a) Structure of laser; (b) optical spectra of 3 μm mode-locked fiber laser; (c) pulse train of 3 μm mode-locked fiber laser after autocorrelation

下载图片 查看原文

图 6. 小型化可调谐3 μm中红外光纤激光器的构成。(a)激光器的照片;(b)激光器的结构示意图;(c)光纤端面镀膜镜M1的照片;(d)光纤端面镀膜镜M2在显微镜下的图像;(e)光纤端面镀膜镜的光学透射谱曲线

Fig. 6. Composition of 3 μm miniaturized wavelength-tunable mid-infrared fiber laser. (a) Photograph of laser; (b) structural diagram of laser; (c) photograph of fiber end-facet mirror M1; (d) microscopic image of fiber end-facet mirror M2; (e) optical transmission spectrum of fiber end-facet mirror

下载图片 查看原文

图 7. 损耗调节装置的结构和原理。(a)损耗调节装置; (b)大损耗状态;(c)中等损耗状态;(d)低损耗状态

Fig. 7. Structure and principle of loss-adjusting device. (a) Loss-adjusting device; (b) large loss; (c) moderate loss; (d) low loss

下载图片 查看原文

图 8. 连续光运转3 μm可调谐全光纤激光器的实验结果。(a)中红外激光输出光谱(插图:3 μm激光窄范围高精度光谱);(b) 3 μm激光的调谐光谱

Fig. 8. Experimental results of 3 μm wavelength-tunable all-fiber laser under continuous light running. (a) Output optical spectrum of mid-infrared laser (Inset is zoom-in view of 3 mm laser spectrum); (b) wavelength-tunable spectra of 3 μm laser

下载图片 查看原文

图 9. 3 μm自调Q激光在207.7 mW抽运功率下的特征。(a)输出光谱(插图:3 μm激光的窄范围高精度光谱);(b)脉冲序列(插图:单脉冲包络)

Fig. 9. Characteristics of 3 μm self-Q-switching operation at pump power of 207.7 mW. (a) Output optical spectrum (inset: a zoom-in view of 3 μm laser spectrum); (b) pulse sequence (inset: single pulse envelope)

下载图片 查看原文

图 10. 抽运功率固定为207.7 mW,3 μm自调Q激光脉冲的波长可调谐研究。(a) 3 μm激光波长调谐光谱;(b)不同调谐波长处的脉冲宽度、重复频率和平均输出功率(插图:2943 nm处的自调Q脉冲序列)

Fig. 10. Research on the 3 μm wavelength-tunable self-Q-switched fiber laser at a fixed pump power of 207.7 mW. (a) Wavelength-tunable spectra of 3 μm fiber laser; (b) pulse width, repetition rate, and average output power at different tunable wavelengths (inset: self-Q-switching pulse sequence at 2943 nm)

下载图片 查看原文

表 13 μm光纤激光器输出功率提升的典型报道

Table1. Typical reports on improvement of output power of 3-μm fiber lasers

YearGain ionPumpwavelength /nmOutputpower /WSlopeefficiency /%Laserwavelength / μmReference
1988Er3+476.5--2.7[7]
1990Er3+792330×10-632.71-2.78[10]
1995Er3+791158×10-322.62.71[21]
1999Er3+/Pr3+7901.717.32.71[29]
2004Er3+9763.5-2.8[39]
2007Er3+975921.32.785[41]
2009Er3+9752414.52.8[47]
2015Er3+98030.5162.938×10-3[64]
2018Er3+98041.622.92.824×10-3[91]
1990Ho3+64012.6×10-34.42.83-2.95[102]
1999Ho3+11501.430-[105]
2004Ho3+11002.5292.86[109]
2015Ho3+11507.2292.83×10-3-2.98×10-3[130]
2003Dy3+11000.2754.52.9[153]
2006Dy3+13000.18202.96[154]
2018Dy3+28301.06733.15[162]
2019Dy3+283010.1583.24[165]

查看原文

表 23 μm调Q光纤激光器的典型报道

Table2. Typical reports on 3 μm Q-switched fiber lasers

YearGain ionAverage outputpower /mWMinimum pulseduration /nsLaserwavelength /nmQ-switchReference
1994Er3+0.51002700AOM[15]
2011Er3+12400902800AOM[52]
2012Ho3+/Pr3+720782867AOM[118]
2012Ho3+-3803005AOM[119]
2012Ho3+-3503002AOM[120]
2013Ho3+6853002970-3015AOM[126]
2012Er3+3183702780Fe2+∶ZnSe[55]
2013Er3+6229002783Grapnene[58]
2015Er3+48511802779Black phosphorus[68]
2015Ho3+327.413702979.9Bi2Te3[133]
2015Ho3+33712302919.1-3004.2Fe2+∶ZnSe[132]
2016Er3+420022902786.8SESAM[77]
2016Er3+85613002791.2Bi2Te3[80]
2016Er3+8227422780Fe2+∶ZnSe[82]
2016Ho3+308.724102970.3Black phosphorus[135]
2016Ho3+/Pr3+48.41730286.7WS2[136]
2017Er3+51604002762.5-2852.5Fe2+∶ZnSe[90]
2018Er3+2608802762-2824Bi2Te3[94]
2019Er3+4856122780Gold nanobipyramids[101]
2018Ho3+/Pr3+21.520002864.2Bi2O2Se[148]
2019Ho3+/Pr3+30.821802834.5-2881.0LAR-GNRs[150]

查看原文

表 33 μm锁模光纤激光器的典型报道

Table3. Typical reports on 3 μm mode-locked fiber lasers

YearGain ionAverage outputpower /mWPulseduration /fsLaserwavelength /nmMode-lockerReference
2012Er3+51190002780Fe2+∶ZnSe[56]
2012Ho3+/Pr3+132240002870SESAM[122]
2014Er3+440600002797SESAM[59]
2014Ho3+/Pr3+7060002859.5InAs[128]
2015Er3+442072805NPR[63]
2015Er3+2064972793NPR[65]
2015Er3+1000250002780SESAM[69]
2016Er3+20001602800-3600NPR[72]
2016Er3+613420002783Black phosphorus[78]
2016Er3+18420002784.5Graphene[83]
2016Ho3+/Pr3+3271802900NPR[134]
2016Ho3+/Pr3+87.886002866.7Black phosphorus[135]
2017Ho3+/Pr3+127.7220002842.2-2876.2SESAM[142]
2017Ho3+/Pr3+-702860NPR[143]
2018Er3+6.2-2771.1Black phosphorus[98]
2019Er3+-2702800NPR[71]
2019Ho3+/Pr3+30047002860FSF[151]
2019Dy3+120330002970-3300FSF[164]
2019Dy3+2048283083NPR[166]

查看原文

表 43 μm增益开关光纤激光器的典型报道

Table4. Typical reports on 3 μm gain-switched fiber lasers

YearGain ionAverage outputpower /mWMinimum pulseduration /nsPulseenergy /μJLaserwavelength /nmReference
2001Er3+-20019002700-2770[35]
2011Er3+2000307-About 2800[51]
2012Ho3+-2706.13002[120]
2014Er3+4011804.2About 2800[61]
2017Er3+4800230372825.4[86]
2017Er3+110661.2-About 2800[87]
2017Er3+119.415505.972699-2869.9[89]
2017Ho3+262.148243.282928.5[141]
2018Er3+11200170802826[97]
2018Ho3+389.314904.872895.5-3000.5[146]
2019Ho3+136.620022.732971.9[152]

查看原文

表 5波长可调谐3 μm光纤激光器的研究报道

Table5. Reports on 3 μm wavelength-tunable fiber lasers

YearGain ionTuningrangeOutputpower /mWWorkingprincpleOperationmodeReference
1992Er3+160 nm (2.67-2.83 μm)26Diffraction gratingCW[175]
2000Er3+110 nm (2.7-2.81 μm)30Diffraction gratingCW[34]
2007Er3+100 nm (2.705-2.805 μm)2000Diffraction gratingCW[42]
2008Er3+/Pr3+100 nm (2.7-2.81 μm)1000Diffraction gratingCW[43]
2010Er3+130 nm (2.71-2.84 μm)11000Diffraction gratingCW[49]
2016Er3+157 nm (2697-2854 nm)260Diffraction gratingCW[74]
2016Er3+62 nm (2762-2824 nm)1240Diffraction gratingQ-switching[76]
2017Er3+107.6 nm (2706.2-2813.8 nm)473.3Diffraction gratingGain-switching[89]
2017Er3+100 nm (2.71-2.83 μm)110Diffraction gratingGain-switching[87]
2017Er3+90 nm (2762.5-2852.5 nm)5160Diffraction gratingQ-switching[90]
1990Ho3+120 nm (2.83-2.95 μm)12.6Diffraction gratingCW[102]
2011Ho3+/Pr3+75 nm (2.825-2.9 μm)>1000Diffraction gratingCW[115]
2012Ho3+66 nm (2.955-3.021 μm)518Diffraction gratingCW[121]
2013Ho3+81 nm (2.95-3.031 μm)-Diffraction gratingQ-switching[126]
2015Ho3+/Pr3+150 nm (2825-2975 nm)7200Diffraction gratingCW[130]
2015Ho3+85 nm (2919.1-3004.2 nm)337Diffraction gratingQ-switching[132]
2017Ho3+/Pr3+34 nm (2824.2-2976.2 nm)127.7Diffraction gratingMode-locking[142]
2017Ho3+/Pr3+37 nm (2850-2887 nm)290Fiber Bragg gratingCW[137]
2018Ho3+105 nm (2895.5-3000.5 nm)389.3Diffraction gratingGain-switching[146]
2019Ho3+/Pr3+50 nm (2.83-2.88 μm)30.8Diffraction gratingQ-switching[150]
2016Dy3+400 nm (2.95-3.35 μm)30Diffraction gratingCW[157]

查看原文

李维炜, 张小金, 王航, 罗正钱. 3 μm中红外稀土掺杂光纤激光器研究进展[J]. 激光与光电子学进展, 2019, 56(17): 170605. Weiwei Li, Xiaojin Zhang, Hang Wang, Zhengqian Luo. Research Progress of Mid-Infrared Rare Earth Ion-Doped Fiber Lasers at 3 μm[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170605.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!