激光与光电子学进展, 2019, 56 (17): 170605, 网络出版: 2019-09-05   

3 μm中红外稀土掺杂光纤激光器研究进展 下载: 2285次特邀综述

Research Progress of Mid-Infrared Rare Earth Ion-Doped Fiber Lasers at 3 μm
作者单位
厦门大学电子工程系, 福建 厦门 361005
引用该论文

李维炜, 张小金, 王航, 罗正钱. 3 μm中红外稀土掺杂光纤激光器研究进展[J]. 激光与光电子学进展, 2019, 56(17): 170605.

Weiwei Li, Xiaojin Zhang, Hang Wang, Zhengqian Luo. Research Progress of Mid-Infrared Rare Earth Ion-Doped Fiber Lasers at 3 μm[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170605.

参考文献

[1] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 2012, 6(7): 423-431.

[2] Guan X F, Wang J W, Zhang Y Z, et al. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er∶Y2O3 ceramic lasers[J]. Photonics Research, 2018, 6(9): 830-836.

[3] Bandyopadhyay N, Bai Y, Tsao S, et al. Room temperature continuous wave operation of λ~3-3.2 μm quantum cascade lasers[J]. Applied Physics Letters, 2012, 101(24): 241110.

[4] Fecko C J, Loparo J J, Tokmakoff A. Generation of 45 femtosecond pulses at 3 μm with a KNbO3 optical parametric amplifier[J]. Optics Communications, 2004, 241(4/5/6): 521-528.

[5] 陈昊, 李剑峰, 欧中华, 等. 中红外光纤激光器的研究进展[J]. 激光与光电子学进展, 2011, 48(11): 111402.

    Chen H, Li J F, Ou Z H, et al. Progress of mid-infrared fiber lasers[J]. Laser & Optoelectronics Progress, 2011, 48(11): 111402.

[6] Snitzer E. Proposed fiber cavities for optical masers[J]. Journal of Applied Physics, 1961, 32(1): 36-39.

[7] Brierley M C, France P W. Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre[J]. Electronics Letters, 1988, 24(15): 935-937.

[8] Quimby RS, Minis-calco W J. Effect of upconversion on 2.7- μm laser action in Er 3+ [C]∥Conference on Lasers and Electro-Optics, April 25-29, 1988, Anaheim, California, United States. Washington, D.C.: OSA, 1988: FE3.

[9] Allain J Y, Monerie M, Poignant H. Erbium-doped fluorozirconate single-mode fibre lasing at 2.71 μm[J]. Electronics Letters, 1989, 25(1): 28-29.

[10] Yanagita H, Masuda I, Yamashita T, et al. Diode laser pumped Er 3+ fibre laser operation between 2.7-2.8 μm [J]. Electronics Letters, 1990, 26(22): 1836-1838.

[11] Allen R, Esterowitz L, Ginther R J. Diode-pumped single-mode fluorozirconate fiber laser from the 4I112→4I13/2 transition in erbium [J]. Applied Physics Letters, 1990, 56(17): 1635-1637.

[12] Allain J Y, Monerie M, Poignant H. Energy transfer in Er 3+/Pr 3+-doped fluoride glass fibres and application to lasing at 2.7 μm [J]. Electronics Letters, 1991, 27(5): 445-447.

[13] FrerichsC. All optical modulation of a 2.7 μm erbium-doped fluorozirconate fiber laser[C]∥Advanced Solid State Lasers, February 1, 1993, New Orleans, Louisiana, United States. Washington, D.C.: OSA, 1993: ML2.

[14] Frerichs C. Efficient ER 3+-doped CW fluorozirconate fiber laser operating at 2.7 μm pumped at 980 nm [J]. International Journal of Infrared and Millimeter Waves, 1994, 15(4): 635-649.

[15] Frerichs C, Tauermann T. Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm[J]. Electronics Letters, 1994, 30(9): 706-707.

[16] SchneiderJ. Continuous-wavelength lasing at 2.7 μm in Er 3+-doped fluoride fibers with low P 3+-codoping [C]∥Conference on Lasers and Electro-Optics, May 8-13, 1994, Anaheim, California, United States. Washington, D.C.: OSA, 1994: CTuK81.

[17] Schneider J, Hauschild D, Frerichs C, et al. Highly efficient Er 3+∶Pr 3+-codoped CW fluorozirconate fiber laser operating at 2.7 μm [J]. International Journal of Infrared and Millimeter Waves, 1994, 15(11): 1907-1922.

[18] Bedö S, Lüthy W, Weber H P. Limits of the output power in Er 3+∶ZBLAN singlemode fibre lasers [J]. Electronics Letters, 1995, 31(3): 199-200.

[19] Ghisler C, Pollnau M, Bunea C, et al. Up-conversion cascade laser at 1.7 μm with simultaneous 2.7 μm lasing in erbium ZBLAN fibre[J]. Electronics Letters, 1995, 31(5): 373-374.

[20] Bedö S, Pollnau M, Lüthy W, et al. Saturation of the 2.71 μm laser output in erbium-doped ZBLAN fibers[J]. Optics Communications, 1995, 116(1/2/3): 81-86.

[21] Pollnau M, Ghisler C, Bunea G, et al. 150 mW unsaturated output power at 3 μm from a single-mode-fiber erbium cascade laser[J]. Applied Physics Letters, 1995, 66(26): 3564-3566.

[22] Schneider J. Mid-infrared fluoride fiber lasers in multiple cascade operation[J]. IEEE Photonics Technology Letters, 1995, 7(4): 354-356.

[23] Pollnau M, Spring R, Ghisler C, et al. Efficiency of erbium 3-μm crystal and fiber lasers[J]. IEEE Journal of Quantum Electronics, 1996, 32(4): 657-663.

[24] Frerichs C, Unrau U B. Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7 μm[J]. Optical Fiber Technology, 1996, 2(4): 358-366.

[25] Pollnau M, Ghisler C, Lüthy W, et al. Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 μm[J]. Optics Letters, 1997, 22(9): 612-614.

[26] Poppe E, Srinivasan B, Jain R K. 980 nm diode-pumped continuous wave mid-IR (2.7 μm) fibre laser[J]. Electronics Letters, 1998, 34(24): 2331-2333.

[27] SrinivasanB, PoppeE, Jain RK. 40 mW single-transverse-mode mid-IR (2.7 μm) CW output from a simple mirror-free 780-nm diode-pympable fiber laser[C]∥Conference on Lasers and Electro-Optics, May 3-8, 1998, San Francisco, California, United States. Washington, D.C.: OSA, 1998: CWM2.

[28] Srinivasan B, Tafoya J, Jain R K. High-power “watt-level” CW operation of diode-pumped 2.7 μm fiber lasers using efficient cross-relaxation and energy transfer mechanisms[J]. Optics Express, 1999, 4(12): 490-495.

[29] Jackson S D, King T A, Pollnau M. Diode-pumped 1.7-W erbium 3-μm fiber laser[J]. Optics Letters, 1999, 24(16): 1133-1135.

[30] Sandrock T, Fischer D, Glas P, et al. Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.8 μm[J]. Optics Letters, 1999, 24(18): 1284-1286.

[31] Dickinson BC, Golding PS, Jackson SD, et al. Gain-switched 3-μm Er∶Pr-codoped fiber laser[C]∥Conference on Lasers and Electro-Optics (CLEO 2000). Technical Digest. Postconference Edition. TOPS Vol.39 (IEEE Cat. No.00CH37088), May 7-12, 2000, San Francisco, CA, USA. New York: IEEE, 2000: CMP3.

[32] Jackson S D, King T A, Pollnau M. Efficient high power operation of erbium 3 μm fibre laser diode-pumped at 975 nm[J]. Electronics Letters, 2000, 36(3): 223-224.

[33] Libatique N JC, Tafoya JD, Feng SH, et al. A compact diode-pumped passively Q-switched mid-IR fiber laser[C]∥Advanced Solid State Lasers, February 13, 2000, Davos, Switzerland. Washington, D.C.: OSA, 2000: MD2.

[34] Libatique N JC, Tafoya JD, ViswanathanN, et al. A “field-usable” diode-pumped ~120-nm wavelength-tunable CW mid-IR fiber laser[C]∥Conference on Lasers and Electro-Optics, May 7-11, 2000, San Francisco, California United States. Washington, D.C.: OSA, 2000: CThV8.

[35] Dickinson B C, Golding P S, Pollnau M, et al. Investigation of a 791-nm pulsed-pumped 2.7- μm Er-doped ZBLAN fibre laser[J]. Optics Communications, 2001, 191: 315-321.

[36] Pollnan M, Jackson S D. Erbium 3 μm fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(1): 30-40.

[37] Linden K J. Fiber laser with 1.2-W CW output power at 2712 nm[J]. IEEE Photonics Technology Letters, 2004, 16(2): 401-403.

[38] Coleman D J, King T A, Ko D K, et al. Q-switched operation of a 2.7 μm cladding-pumped Er 3+/Pr 3+ codoped ZBLAN fibre laser [J]. Optics Communications, 2004, 236(4/5/6): 379-385.

[39] SegiT, ShimaK, SakaiT, et al. 3-μm-band high output erbium-doped fiber lasers[C]∥Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, May 16-21, 2004, San Francisco, California, United States. Washington, D.C.: OSA, 2004: CThZ5.

[40] Tafoya J, Pierce J W, Jain R K, et al. Efficient and compact high-power mid-IR (~3 μm) lasers for surgical applications[J]. Proceedings of SPIE, 2004, 5312: 218-222.

[41] Zhu X S, Jain R. 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser[J]. Optics Letters, 2007, 32(1): 26-28.

[42] Zhu X S, Jain R. Compact 2 W wavelength-tunable Er∶ZBLAN mid-infrared fiber laser[J]. Optics Letters, 2007, 32(16): 2381-2383.

[43] Zhu X S, Jain R. Watt-level 100-nm tunable 3-μm fiber laser[J]. IEEE Photonics Technology Letters, 2008, 20(2): 156-158.

[44] Zhu X S, Jain R. Watt-level Er-doped and Er-Pr-codoped ZBLAN fiber amplifiers at the 2.7-2.8 μm wavelength range[J]. Optics Letters, 2008, 33(14): 1578-1580.

[45] Jackson S D. High-power erbium cascade fibre laser[J]. Electronics Letters, 2009, 45(16): 830-832.

[46] Bernier M, Faucher D, Caron N, et al. Highly stable and efficient erbium-doped 2.8 μm all fiber laser[J]. Optics Express, 2009, 17(19): 16941-16946.

[47] Tokita S, Murakami M, Shimizu S, et al. Liquid-cooled 24 W mid-infrared Er∶ZBLAN fiber laser[J]. Optics Letters, 2009, 34(20): 3062-3064.

[48] Faucher D, Bernier M, Caron N, et al. Erbium-doped all-fiber laser at 2.94 μm[J]. Optics Letters, 2009, 34(21): 3313-3315.

[49] Tokita S, Hirokane M, Murakami M, et al. Stable 10 W Er∶ZBLAN fiber laser operating at 2.71-2.88 μm[J]. Optics Letters, 2010, 35(23): 3943-3945.

[50] Faucher D, Bernier M, Androz G, et al. 20 W passively cooled single-mode all-fiber laser at 2.8 μm[J]. Optics Letters, 2011, 36(7): 1104-1106.

[51] Gorjan M, Petkovšek R. Marin ek M, et al. High-power pulsed diode-pumped Er∶ZBLAN fiber laser [J]. Optics Letters, 2011, 36(10): 1923-1925.

[52] Tokita S, Murakami M, Shimizu S, et al. 12 W Q-switched Er∶ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2011, 36(15): 2812-2814.

[53] FaucherD, CaronN, BernierM, et al. QCW all-fiber laser at 2.94 μm[C]∥Lasers, Sources, and Related Photonic Devices, February 1-2, 2012, San Diego, California, United States. Washington, D.C.: OSA, 2012: FTh4A. 6.

[54] Tsai T Y, Fang Y C, Tsao H X, et al. Passively cascade-pulsed erbium ZBLAN all-fiber laser[J]. Optics Express, 2012, 20(12): 12787-12792.

[55] Wei C, Zhu X S, Norwood R A, et al. Passively Q-switched 2.8- μm nanosecond fiber laser[J]. IEEE Photonics Technology Letters, 2012, 24(19): 1741-1744.

[56] Wei C, Zhu X S, Norwood R A, et al. Passively continuous-wave mode-locked Er 3+-doped ZBLAN fiber laser at 2.8 μm [J]. Optics Letters, 2012, 37(18): 3849-3851.

[57] TokitaS, MurakamiM, ShimizuS, et al. Graphene Q-switching of a 3 μm Er∶ZBLAN fiber laser[C]∥Advanced Solid-State Lasers Congress, October 27-November 1, 2013, Paris France. Washington, D.C.: OSA, 2013: AF2A. 9.

[58] Wei C, Zhu X S, Wang F, et al. Graphene Q-switched 2.78 μm Er 3+-doped fluoride fiber laser [J]. Optics Letters, 2013, 38(17): 3233-3236.

[59] Haboucha A, Fortin V, Bernier M, et al. Fiber Bragg grating stabilization of a passively mode-locked 2.8 μm Er 3+∶fluoride glass fiber laser [J]. Optics Letters, 2014, 39(11): 3294-3297.

[60] Zhu G W, Zhu X S, Norwood R A, et al. Experimental and numerical investigations on Q-switched laser-seeded fiber MOPA at 2.8 μm[J]. Journal of Lightwave Technology, 2014, 32(23): 4553-4557.

[61] Shen Y L, Huang K, Zhou S Q, et al. Gain-switched 2.8 μm Er 3+-doped double-clad ZBLAN fiber laser [J]. Proceedings of SPIE, 2015, 9543: 95431E.

[62] Bernier M, Michaud-Belleau V, Levasseur S, et al. All-fiber DFB laser operating at 2.8 μm[J]. Optics Letters, 2015, 40(1): 81-84.

[63] Duval S, Bernier M, Fortin V, et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2015, 2(7): 623-626.

[64] Fortin V, Bernier M, Bah S T, et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 2015, 40(12): 2882-2885.

[65] Hu T, Jackson S D, Hudson D D. Ultrafast pulses from a mid-infrared fiber laser[J]. Optics Letters, 2015, 40(18): 4226-4228.

[66] HuT, Jackson SD, Hudson DD. A mid-infrared mode-locked fiber laser for frequency combs[C]∥Nonlinear Optics, July 26-31, 2015, Kauai, Hawaii, United States. Washington, D.C.: OSA, 2015: NTh2A. 4.

[67] HuT, Jackson SD, Hudson DD. Femtosecond mode-locked pulses from a mid-infrared fiber laser[C]∥2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, June 21-25, 2015, Munich, Germany. Washington, D.C.: OSA, 2015: CJ_5_2.

[68] Qin Z P, Xie G Q, Zhang H, et al. Black phosphorus as saturable absorber for the Q-switched Er∶ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 2015, 23(19): 24713-24718.

[69] Tang P H, Qin Z P, Liu J, et al. Watt-level passively mode-locked Er 3+-doped ZBLAN fiber laser at 2.8 μm [J]. Optics Letters, 2015, 40(21): 4855-4888.

[70] Wan P, Yang L M, Bai S, et al. High energy 3 μm ultrafast pulsed fiber laser[J]. Optics Express, 2015, 23(7): 9527-9532.

[71] Duval S, Olivier M, Fortin V, et al. 23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm[J]. Proceedings of SPIE, 2016, 9728: 972802.

[72] Duval S, Gauthier J C, Robichaud L R, et al. Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 μm[J]. Optics Letters, 2016, 41(22): 5294-5297.

[73] 沈炎龙, 王屹山, 谌鸿伟, 等. 高平均功率连续锁模中红外光纤激光器[J]. 中国激光, 2018, 45(6): 0615001.

    Shen Y L, Wang Y S, Chen H W, et al. High average power continuous-wave mode-locked mid-infrared fiber laser[J]. Chinese Journal of Lasers, 2018, 45(6): 0615001.

[74] Henderson-Sapir O, Jackson S D, Ottaway D J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser[J]. Optics Letters, 2016, 41(7): 1676-1679.

[75] Li J F, Wang L L, Luo H Y, et al. High power cascaded erbium doped fluoride fiber laser at room temperature[J]. IEEE Photonics Technology Letters, 2016, 28(6): 673-676.

[76] LiuJ, HuangB, Tang PH, et al. Volume Bragg grating based tunable continuous-wave and Bi2Te3Q-switched Er 3+∶ZBLAN fiber laser [C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California, United States. Washington, D.C.: OSA, 2016: AW1K. 7.

[77] Luo H Y, Li J, Xie J T, et al. High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system[J]. Optics Express, 2016, 24(25): 29022-29032.

[78] Qin Z P, Xie G Q, Zhao C J, et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 2016, 41(1): 56-59.

[79] Shen Y L, Wang Y S, Luan K P, et al. Watt-level passively Q-switched heavily Er 3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror [J]. Scientific Reports, 2016, 6: 26659.

[80] Tang P H, Wu M, Wang Q K, et al. 2.8- μm pulsed Er 3+∶ZBLAN fiber laser modulated by topological insulator [J]. IEEE Photonics Technology Letters, 2016, 28(14): 1573-1576.

[81] Zhang T, Feng G Y, Zhang H, et al. Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8 μm using Fe 2+∶ZnSe saturable absorber mirror [J]. Optical Engineering, 2016, 55(8): 086106.

[82] Zhang T, Feng G Y, Zhang H, et al. 2.78 μm passively Q-switched Er 3+-doped ZBLAN fiber laser based on PLD-Fe 2+∶ZnSe film [J]. Laser Physics Letters, 2016, 13(7): 075102.

[83] Zhu G W, Zhu X S, Wang F Q, et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 2016, 28(1): 7-10.

[84] Aydin YO, FortinV, MaesF, et al. High efficiency cascade fiber laser at 2.8 μm[C]∥2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, June 25-29, 2017, Munich, Germany. Washington, D.C.: OSA, 2017: CJ_9_6.

[85] Aydın Y O, Fortin V, Maes F, et al. Diode-pumped mid-infrared fiber laser with 50% slope efficiency[J]. Optica, 2017, 4(2): 235-238.

[86] ParadisP, FortinV, Aydin YO, et al. All-fiber gain-switched laser at 2.8 microns[C]∥Laser Congress 2017 (ASSL, LAC), October 1-5, 2017, Nagoya, Aichi Japan. Washington, D.C.: OSA, 2017: ATh4A. 5.

[87] Shen Y L, Wang Y S, Luan K P, et al. Efficient wavelength-tunable gain-switching and gain-switched mode-locking operation of a heavily Er 3+-doped ZBLAN mid-infrared fiber laser [J]. IEEE Photonics Journal, 2017, 9(4): 1504510.

[88] 沈炎龙, 周松青, 谌鸿伟, 等. 中红外2.8 μm光纤激光器机械调Q工作特性[J]. 光学学报, 2016, 36(1): 0114002.

    Shen Y L, Zhou S Q, Chen H W, et al. Output characteristics of Q-switched mid-infrared fiber laser with a mechanical chopper[J]. Acta Optica Sinica, 2016, 36(1): 0114002.

[89] Wei C, Luo H Y, Shi H X, et al. Widely wavelength tunable gain-switched Er 3+-doped ZBLAN fiber laser around 2.8 μm [J]. Optics Express, 2017, 25(8): 8816-8827.

[90] Wei C, Zhang H, Shi H, et al. Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range[J]. IEEE Photonics Technology Letters, 2017, 29(11): 881-884.

[91] Aydin Y O, Fortin V, Vallée R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 2018, 43(18): 4542-4545.

[92] Aydın YO, FortinV, ValléeR, et al. High power splice-less fiber laser at 2825 nm[C]∥Conference on Lasers and Electro-Optics, May 13-18, 2018, San Jose, California, United States. Washington, D.C.: OSA, 2018: STh4K. 2.

[93] Lai X, Li J F, Luo H Y, et al. High power passively Q-switched Er 3+-doped ZBLAN fiber laser at 2.8 μm based on a semiconductor saturable absorber mirror [J]. Laser Physics Letters, 2018, 15(8): 085109.

[94] Liu J, Wu M, Huang B, et al. Widely wavelength-tunable mid-infrared fluoride fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 0900507.

[95] Ning S G, Feng G Y, Dai S Y, et al. Mid-infrared Fe 2+∶ZnSe semiconductor saturable absorber mirror for passively Q-switched Er 3+-doped ZBLAN fiber laser [J]. AIP Advances, 2018, 8(2): 025121.

[96] Ning S G, Feng G Y, Zhang H, et al. Fabrication of Fe 2+∶ZnSe nanocrystals and application for a passively Q-switched fiber laser [J]. Optical Materials Express, 2018, 8(4): 865-874.

[97] Paradis P, Fortin V, Aydin Y O, et al. 10 W-level gain-switched all-fiber laser at 2.8 μm[J]. Optics Letters, 2018, 43(13): 3196-3199.

[98] Qin Z P, Xie G Q, Ma J G, et al. 2.8 μm all-fiber Q-switched and mode-locked lasers with black phosphorus[J]. Photonics Research, 2018, 6(11): 1074-1078.

[99] Xie GQ, Qin ZP. Mid-infrared ultrafast lasers based on two-dimension materials[C]∥CLEO Pacific Rim Conference 2018, July 29-August 3, 2018, Hong Kong, China. Washington, D.C.: OSA, 2018: Th2G. 2.

[100] Zhang W, Feng G Y, Dai S Y, et al. Q-switched mid-infrared Er 3+∶ZBLAN fiber laser based on gold nanocrystals [J]. Laser Physics, 2018, 28(9): 095104.

[101] Zhang W, Zhang H, Feng G Y, et al. Gold nanobipyramids as a saturable absorber for passively Q-switched Er 3+∶ZBLAN fiber laser [J]. Optics & Laser Technology, 2019, 111: 30-34.

[102] Wetenkamp L. Efficient CW operation of a 2.9 μm Ho 3+-doped fluorozirconate fibre laser pumped at 640 nm [J]. Electronics Letters, 1990, 26(13): 883-884.

[103] SumiyoshiT, SekitaH. Dual wavelength (3 μm and 2 μm) CW cascade oscillation of a holmium-doped double-clad fiber laser[C]∥Conference Proceedings. LEOS '97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting, November 10-13, 1997, San Francisco, CA, USA. New York: IEEE, 1997: 534- 535.

[104] Sumiyoshi T, Sekita H. Dual-wavelength continuous-wave cascade oscillation at 3 and 2 μm with a holmium-doped fluoride-glass fiber laser[J]. Optics Letters, 1998, 23(23): 1837-1839.

[105] Sumiyoshi T, Sekita H, Arai T, et al. High-power continuous-wave 3- and 2- μm cascade Ho 3+∶ZBLAN fiber laser and its medical applications [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 936-943.

[106] Naruse K, Arai T, Kawauchi S, et al. Theoretical study of variable function (cutting/coagulating) laser surgical system using continuous-wave 3 μm, 2 μm cascade Ho 3+∶ZBLAN fiber laser [J]. Proceedings of SPIE, 2001, 4257: 334-340.

[107] Jackson S D. 210 mW 2.84 μm Ho 3+, Pr 3+-doped fluoride fibre laser [J]. Electronics Letters, 2003, 39(10): 772-773.

[108] Jackson S D. Singly Ho 3+-doped fluoride fibre laser operating at 2.92 μm [J]. Electronics Letters, 2004, 40(22): 1400-1401.

[109] Jackson S D. Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 μm[J]. Optics Letters, 2004, 29(4): 334-336.

[110] Qamar F Z, King T A, Jackson S D, et al. Holmium, praseodymium-doped fluoride fiber laser operating near 2.87 μm and pumped with a Nd∶YAG laser[J]. Journal of Lightwave Technology, 2005, 23(12): 4315-4320.

[111] Jackson S D. Midinfrared holmium fiber lasers[J]. IEEE Journal of Quantum Electronics, 2006, 42(2): 187-191.

[112] Talavera D V, Mejía E B. Holmium-doped fluoride fiber laser at 2950 nm pumped at 1175 nm[J]. Laser Physics, 2006, 16(3): 436-440.

[113] Jackson S D, Bugge F, Erbert G. Directly diode-pumped holmium fiber lasers[J]. Optics Letters, 2007, 32(17): 2496-2498.

[114] Jackson S D. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm[J]. Optics Letters, 2009, 34(15): 2327-2329.

[115] Hudson DD, AndersonL, MagiE, et al. Diode-pumped Ho 3+, Pr 3+-doped fluoride glass double clad fibre laser tuneable from 2.825 μm to 2.90 μm [C]∥2011 IEEE Photonics Society Summer Topical Meeting Series, July 18-20, 2011, Montreal, QC, Canada. New York: IEEE, 2011: 87- 88.

[116] Hudson D D, Magi E, Gomes L, et al. 1 W diode-pumped tunable Ho 3+, Pr 3+-doped fluoride glass fibre laser [J]. Electronics Letters, 2011, 47(17): 985-986.

[117] Li J F, Hudson D D, Jackson S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Optics Letters, 2011, 36(18): 3642-3644.

[118] Hu T, Hudson D D, Jackson S D. Actively Q-switched 2.9 μm Ho 3+Pr 3+-doped fluoride fiber laser [J]. Optics Letters, 2012, 37(11): 2145-2147.

[119] Li J F, Hu T, Jackson S D. Dual wavelength Q-switched cascade laser[J]. Optics Letters, 2012, 37(12): 2208-2210.

[120] Li J F, Hu T, Jackson S D. Q-switched induced gain switching of a two-transition cascade laser[J]. Optics Express, 2012, 20(12): 13123-13128.

[121] Li J F, Hudson D D, Jackson S D. Tuned cascade laser[J]. IEEE Photonics Technology Letters, 2012, 24(14): 1215-1217.

[122] Li J F, Hudson D D, Liu Y, et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Optics Letters, 2012, 37(18): 3747-3749.

[123] Hu T, Jackson S D, Hudson D D. High peak power actively Q-switched Ho 3+, Pr 3+-co-doped fluoride fibre laser [J]. Electronics Letters, 2013, 49(12): 766-767.

[124] Hudson D D, Jackson S D. Fiber lasers open gateway to the mid-IR[J]. SPIE Newsroom, 2013.

[125] Hudson D D, Williams R J, Withford M J, et al. Single-frequency fiber laser operating at 2.9 μm[J]. Optics Letters, 2013, 38(14): 2388-2390.

[126] Li J F, Yang Y, Hudson D D, et al. A tunable Q-switched Ho 3+-doped fluoride fiber laser [J]. Laser Physics Letters, 2013, 10(4): 045107.

[127] Zhu G W, Zhu X S, Balakrishnan K, et al. Fe 2+∶ZnSe and graphene Q-switched singly Ho 3+-doped ZBLAN fiber lasers at 3 μm [J]. Optical Materials Express, 2013, 3(9): 1365-1377.

[128] Hu T, Hudson D D, Jackson S D. Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class[J]. Optics Letters, 2014, 39(7): 2133-2136.

[129] Li J F, Luo H Y, He Y L, et al. Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser[J]. Laser Physics Letters, 2014, 11(6): 065102.

[130] Crawford S, Hudson D D, Jackson S D. High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss[J]. IEEE Photonics Journal, 2015, 7(3): 1502309.

[131] Li J F, Luo H Y, Wang L L, et al. Mid-infrared passively switched pulsed dual wavelength Ho 3+-doped fluoride fiber laser at 3 μm and 2 μm [J]. Scientific Reports, 2015, 5: 10770.

[132] Li J F, Luo H Y, Wang L L, et al. Tunable Fe 2+∶ZnSe passively Q-switched Ho 3+-doped ZBLAN fiber laser around 3 μm [J]. Optics Express, 2015, 23(17): 22362-22370.

[133] Li J F, Luo H Y, Wang L L, et al. 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber[J]. Optics Letters, 2015, 40(15): 3659-3662.

[134] Antipov S, Hudson D D, Fuerbach A, et al. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window[J]. Optica, 2016, 3(12): 1373-1376.

[135] Li J F, Luo H Y, Zhai B, et al. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers[J]. Scientific Reports, 2016, 6: 30361.

[136] Wei C, Luo H Y, Zhang H, et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Physics Letters, 2016, 13(10): 105108.

[137] Bharathan G, Woodward R I, Ams M, et al. Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers[J]. Optics Express, 2017, 25(24): 30013-30019.

[138] Hudson DD, AntipovS, FuerbachA, et al. Ultrafast fiber lasers in the 3 μm water window[C]∥Nonlinear Optics, July 17-21, 2017, Waikoloa, Hawaii, United States. Washington, D.C.: OSA, 2017: NTu3A. 4.

[139] Hudson DD, AntipovS, Li LZ, et al. Octave-spanning supercontinuum in the mid-IR with a 3 μm ultrafast fiber laser[C]∥Nonlinear Optics, July 17-21, 2017, Waikoloa, Hawaii, United States. Washington, D.C.: OSA, 2017: NTu3A. 3.

[140] Hudson D D, Antipov S, Li L Z, et al. Toward all-fiber supercontinuum spanning the mid-infrared[J]. Optica, 2017, 4(10): 1163-1166.

[141] Luo H Y, Li J F, Zhu C, et al. Cascaded gain-switching in the mid-infrared region[J]. Scientific Reports, 2017, 7: 16891.

[142] Wei C, Shi H X, Luo H Y, et al. 34 nm-wavelength-tunable picosecond Ho 3+/Pr 3+-codoped ZBLAN fiber laser [J]. Optics Express, 2017, 25(16): 19170-19178.

[143] Woodward R I, Hudson D D, Fuerbach A, et al. Generation of 70-fs pulses at 2.86 μm from a mid-infrared fiber laser[J]. Optics Letters, 2017, 42(23): 4893-4896.

[144] Woodward RI, Hudson DD, FuerbachA, et al. Mid-infrared few-cycle pulse generation with a Ho∶ZBLAN fibre laser[C]∥Australian and New Zealand Conference on Optics and Photonics.[S.l.: S.n.], 2017: 115.

[145] Jia S J, Jia Z X, Yao C F, et al. 2875 nm lasing from Ho 3+-doped fluoroindate glass fibers [J]. IEEE Photonics Technology Letters, 2018, 30(4): 323-326.

[146] Luo H Y, Li J F, Hai Y C, et al. State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94 μm[J]. Optics Express, 2018, 26(1): 63-79.

[147] Shi YW, Li JF, Luo HY, et al. Low-threshold dual-waveband 3 μm and 2 μm pulse generation based on hybrid pumping[C]∥CLEO Pacific Rim Conference 2018, July 29-August 3, 2018, Hong Kong, China. Washington, D.C.: OSA, 2018: F1A. 3.

[148] Tian X L, Luo H Y, Wei R F, et al. An ultrabroadband mid-infrared pulsed optical switch employing solution-processed bismuth oxyselenide[J]. Advanced Materials, 2018, 30(31): 1801021.

[149] Woodward RI, Hudson DD, FuerbachA, et al. Few-cycle pulse generation from a 3 μm fiber laser[C]∥Conference on Lasers and Electro-Optics, May 13-18, 2018, San Jose, California, United States. Washington, D.C.: OSA, 2018: STh4K. 1.

[150] Luo H Y, Kang Z, Gao Y, et al. Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 μm[J]. Optics Express, 2019, 27(4): 4886-4896.

[151] Majewski M R, Woodward R I, Jackson S D. Ultrafast mid-infrared fiber laser mode-locked using frequency-shifted feedback[J]. Optics Letters, 2019, 44(7): 1698-1701.

[152] Shi Y W, Li J F, Luo H Y, et al. Gain-switched dual-waveband Ho 3+-doped fluoride fiber laser based on hybrid pumping [J]. IEEE Photonics Technology Letters, 2019, 31(1): 46-49.

[153] Jackson S D. Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser[J]. Applied Physics Letters, 2003, 83(7): 1316-1318.

[154] Tsang Y H. El-Taher A E, King T A, et al. Efficient 2.96 μm dysprosium-doped fluoride fibre laser pumped with a Nd∶YAG laser operating at 1.3 μm[J]. Optics Express, 2006, 14(2): 678-685.

[155] Tsang Y H. El-Taher A E. Efficient lasing at near 3 μm by a Dy-doped ZBLAN fiber laser pumped at ~1.1 μm by an Yb fiber laser[J]. Laser Physics Letters, 2011, 8(11): 818-822.

[156] Majewski M R, Jackson S D. Highly efficient mid-infrared dysprosium fiber laser[J]. Optics Letters, 2016, 41(10): 2173-2176.

[157] Majewski M R, Jackson S D. Tunable dysprosium laser[J]. Optics Letters, 2016, 41(19): 4496-4498.

[158] Majewski MR, Jackson SD. Efficient in-band pumped Dy∶ZBLAN mid-infrared fiber laser[C]∥Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), September 5-8, 2016, Sydney, Australia. Washington, D.C.: OSA, 2016: AM2C. 2.

[159] Majewski M R, Jackson S D. Recent progress in 3 micron class dysprosium-doped fluoride fiber lasers[J]. Proceedings of SPIE, 2017, 10083: 1008317.

[160] Majewski M R, Woodward R I, Jackson S D. Near infrared pumped full gain bandwidth tunable 3 micron dysprosium fiber laser[J]. Proceedings of SPIE, 2018, 10512: 105120U.

[161] Majewski M R, Woodward R I, Jackson S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm[J]. Optics Letters, 2018, 43(5): 971-974.

[162] Woodward R I, Majewski M R, Bharathan G, et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency[J]. Optics Letters, 2018, 43(7): 1471-1474.

[163] Woodward R I, Majewski M R, Jackson S D. Mode-locked dysprosium fiber laser:picosecond pulse generation from 2.97 to 3.30 μm[J]. APL Photonics, 2018, 3(11): 116106.

[164] Woodward R I, Majewski M R, Jackson S D. Electronically tunable mid-infrared mode-locked dysprosium fiber laser with over 330 nm tunability[J]. Proceedings of SPIE, 2019, 10897: 108970R.

[165] Fortin V, Jobin F, Larose M, et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm[J]. Optics Letters, 2019, 44(3): 491-494.

[166] Wang Y C, Jobin F, Duval S, et al. Ultrafast Dy 3+∶fluoride fiber laser beyond 3 μm [J]. Optics Letters, 2019, 44(2): 395-398.

[167] Majewski M R, Woodward R I, Carreé J Y, et al. Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber[J]. Optics Letters, 2018, 43(8): 1926-1929.

[168] Bagdasarov K S, Zhekov V I, Lobachev V A, et al. Steady-state emission from a Y3Al5O12∶Er 3+laser (λ =2.94 μ, T=300°K) [J]. Soviet Journal of Quantum Electronics, 1983, 13(2): 262-263.

[169] Zhekov V I, Lobachev V A, Murina T M, et al. Efficient cross-relaxation laser emitting at λ=2.94 μ[J]. Soviet Journal of Quantum Electronics, 1983, 13(9): 1235-1237.

[170] Pollack S A, Chang D B, Moise N L. Continuous wave and Q-switched infrared erbium laser[J]. Applied Physics Letters, 1986, 49(23): 1578-1580.

[171] Auzel F, Meichenin D, Poignant H. Laser cross-section and quantum yield of Er 3+ at 2.7 μm in a ZrF4-based fluoride glass [J]. Electronics Letters, 1988, 24(15): 909-910.

[172] Johnson L F, Guggenheim H J. Laser emission at 3 μ from Dy 3+in BaY2F8[J]. Applied Physics Letters, 1973, 23(2): 96-98.

[173] Alcock I P, Tropper A C, Ferguson A I, et al. Q-switched operation of a neodymium-doped monomode fibre laser[J]. Electronics Letters, 1986, 22(2): 84-85.

[174] Alcock I P, Ferguson A I, Hanna D C, et al. Mode-locking of a neodymium-doped monomode fibre laser[J]. Electronics Letters, 1986, 22(5): 268-269.

[175] Wetenkamp L, Frerichs C, West G F, et al. Efficient CW operation of tunable fluorozirconate fibre lasers at wavelengths pumpable with semiconductor laser diodes[J]. Journal of Non-Crystalline Solids, 1992, 140: 19-24.

[176] 史红霞. 3 μm波段可调谐脉冲光纤激光器基础研究[D]. 成都: 电子科技大学, 2018: 20- 22.

    Shi HX. The research on wavelength-tunable pulsed fiber lasers around 3 μm[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 20- 22.

[177] Kir'Yanov A V, Barmenkov Y O. Self-Q-switched ytterbium-doped all-fiber laser[J]. Laser Physics Letters, 2006, 3(10): 498-502.

[178] Luo Z Q, Ruan Q J, Zhong M, et al. Compact self-Q-switched green upconversion Er∶ZBLAN all-fiber laser operating at 543.4 nm[J]. Optics Letters, 2016, 41(10): 2258-2261.

[179] Li W W, Wang H J, Du T J, et al. Compact self-Q-switched, tunable mid-infrared all-fiber pulsed laser[J]. Optics Express, 2018, 26(26): 34497-34502.

李维炜, 张小金, 王航, 罗正钱. 3 μm中红外稀土掺杂光纤激光器研究进展[J]. 激光与光电子学进展, 2019, 56(17): 170605. Weiwei Li, Xiaojin Zhang, Hang Wang, Zhengqian Luo. Research Progress of Mid-Infrared Rare Earth Ion-Doped Fiber Lasers at 3 μm[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170605.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!