红外与毫米波学报, 2017, 36 (3): 321, 网络出版: 2017-07-05  

螺旋环超材料太赫兹吸波器的响应原理及特性

Response mechanism and properties of spiral-shaped metamaterial absorbers
作者单位
电子科技大学 光电信息学院 电子薄膜与集成器件国家重点实验室, 四川 成都 610054
摘要
提出一种表层电磁谐振器呈螺旋环的超材料太赫兹吸波器.与常规的超材料吸波器不同, 在材料的种类及厚度都不变的情况下, 仅通过改变表面螺旋环的环数或环的起始和终止位置, 就能有效地调节螺旋环超材料的太赫兹响应性能.研究发现, 该超材料的响应频率的仿真值与驻波理论计算值基本吻合, 说明螺旋环超材料的响应机理可以通过驻波理论解释、其响应频率具有可预计性.为了探究螺旋环超材料的响应机理, 还比较研究了闭合圆环及开口圆环超材料吸波器的性能.结果表明, 螺旋环、闭合圆环、开口圆环三种超材料吸波器具有部分类似的太赫兹响应性能.但是, 与另外两种超材料不同, 螺旋环超材料的表层电磁谐振器是半径连续变化的螺旋环、具有更强的耦合作用以及更加简便和灵活的性能调节方式.研究成果对超材料的理论及设计研究有新的启示.
Abstract
Novel spiral-shaped metamaterial absorbers (MAs) were designed. Different from the traditional MAs, the THz responses of the as-designed MAs can be effectively adjusted by altering the number of the spirals and their locations, in which the functional materials and their thicknesses remain unchanged. Results reveal that the response frequencies obtained by CST simulations agree well with those theoretically estimated by standing wave formula, suggesting high predictability of the response frequency for such MAs. In order to better understand the response mechanism of the spiral-shaped MAs, ring-shaped and split ring-shaped MAs were simultaneously investigated. Simulation results indicate that these MAs exhibit some similar response properties. However, different from the ring-shaped and split ring-shaped MAs, the as-designed spiral-shaped MAs exhibit stronger coupling effect and easier adjustment, largely due to the continuous alteration in the spiral radius for the latter. These results are helpful for promoting the theoretical study and design of metamaterials.
参考文献

[1] Wei A, Lee M, Hu Q. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array[J]. Optics Letters, 2005, 30(19): 2563-2565.

[2] Federici J F, Schulkin B, Huang F, et al. THz imaging and sensing for security applications—explosives, weapons and drugs[J]. Semiconductor Science & Technology, 2005, 20(7): S266-S280.

[3] Ferguson B, Wang S, Gray D, et al. T-ray computed tomography.[J]. Optics Letters, 2002, 27(15): 1312-1314.

[4] Liu H B, Plopper G, Earley S, et al. Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy[J]. Biosensors and Bioelectronics, 2007, 22(6): 1075-1080.

[5] Abraham E, Younus A, Aguerre C, et al. Refraction losses in terahertz computed tomography[J]. Optics Communications, 2010, 283(10): 2050-2055.

[6] Brucherseifer M, Nagel M, Bolivar P H, et al. Label-free probing of the binding state of DNA by time-domain terahertz sensing[J]. Applied Physics Letters, 2000, 77(24): 4049-4051.

[7] Jansen C, Priebe S, M ller C, et al. Diffuse scattering from rough surfaces in THz communication channels[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(2): 462-472.

[8] Veselago V G. The Electrodynamics of Substances with Simultaneously Negative Values of and μ[J]. Physics-Uspekhi, 1968,10(4): 509.

[9] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969.

[10] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

[11] HUANG Rui, XU Xiang-Dong, AO Tian-Hong,et al. Modulation of response frequency and absorption band width for terahertz metamaterials[J]. J. Infrared Millim. Waves (黄锐, 许向东, 敖天宏, 等.太赫兹超材料响应频率及频带的调控红,外与毫米波学报), 2015, 34(1): 44-50.

[12] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 1586-1594.

[13] Tao H, Bingham C M, Strikwerda A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization[J].Physical Review B, 2008,78(24): 1879-1882.

[14] Zhu J, Eleftheriades G V. A Compact Transmission-Line Metamaterial Antenna With Extended Bandwidth[J]. IEEE Antennas & Wireless Propagation Letters, 2009, 8(4): 295-298.

[15] Wang D, Qiu C, Hong M. Coupling effect of spiral-shaped terahertz metamaterials for tunable electromagnetic response[J]. Applied Physics A, 2014, 115(1): 25-29.

[16] Peng X Y, Wang B, Lai S,et al. Ultrathin multi-bang planar metamaterial absorber based on standing wave resonances[J]. Optics express, 2012, 20(25): 27756-27765.

[17] Bahl I, Bhartia P. Microwave Solid State Circuit Design [M]. (郑新, 赵玉洁, 刘永宁等, 译. 北京: 电子工业出版), 2006: 212-214.

[18] Kuznetsova S M, Andryieuski A, Lavrinenko A V. Applicability of point dipoles approximation to all-dielectric metamaterials[J].Physical Review B, 2015,92(3): 1-10.

[19] LU Jun, CHEN Xin-Yi, WANG Jian-Bo. Effects of circular unit of FSS on the performance of wave absorbing materials [J]. Acta Physica Sinica(卢俊, 陈新邑, 汪剑波. 圆环单元FSS对吸波材料特性的影响研究,物理学报), 2008, 57(11): 7200-7203.

[20] WANG Jian-Bo, XIAO Hong-Liang, CHEN Gui-Bo, et al. Influence of ring FSS on improving characteristics of radar absorbing materials[J]. Chinese Optics(汪剑波, 肖洪亮, 陈桂波,等. 圆环单元FSS对改善吸波体雷达吸波特性的影响 中国光学) ,2010,03(3): 296-300.

[21] Zhang F, Liu Z, Qiu K, et al. Conductive rubber based flexible metamaterial[J]. Applied Physics Letters, 2015, 106(6): 061906.

[22] Zhou J, Economon E N, Koschny T, et al. Unifying approach to left-handed material design[J]. Optics Letters, 2008, 31(24): 3620-3622.

陈哲耕, 许向东, 谷雨, 敖天宏, 李欣荣, 戴泽林, 孙铭徽, 蒋亚东, 连宇翔, 王福. 螺旋环超材料太赫兹吸波器的响应原理及特性[J]. 红外与毫米波学报, 2017, 36(3): 321. CHEN Zhe-Geng, XU Xiang-Dong, GU Yu, AO Tian-Hong, LI Xin-Rong, DAI Ze-Lin, SUN Ming-Hui, JIANG Ya-Dong, LIAN Yu-Xiang, WANG Fu. Response mechanism and properties of spiral-shaped metamaterial absorbers[J]. Journal of Infrared and Millimeter Waves, 2017, 36(3): 321.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!