大气与环境光学学报, 2016, 11 (1): 37, 网络出版: 2016-03-22  

双通道石英增强光声光谱测声器的设计及实验研究

Design and Experimental Research on Two Channel Quartz-Enhanced Photoacoustic Spectroscopy Spectrophone
作者单位
山西大学激光光谱研究所,量子光学与光量子器件国家重点实验室, 山西 太原 030006
摘要
设计了一款拥有双谐振腔的新型石英增强光声光谱测声器。通过开展多气体浓度的快速测量实验,研究了系统的灵敏度及可靠性。实验结果显示该种新颖的 谐振腔结构并未引入新的噪声。双谐振腔的设计大大增强了石英音叉与谐振腔之间的声耦合强度,这一强耦合使传感器的响应时间下降至约5 ms,且上下两通 道单独工作时的归一化噪声等效吸收系数分别达到7.8×10-9 cm-1W/√Hz和8.1×10-9 cm-1W/√Hz。另外,这一 配置提供了两个相互独立的气体检测通道, 为不同波长特别是波长间隔较大的两路激光光信号的相加或相消提供了一种可行性方案,也必将对多组分混合气体的快速在线检测的发展起到极大的推动作用。
Abstract
Acoustic detection sensor system based on quartz-enhanced photoacoustic spectroscopy (QEPAS) with double acousticmicro-resonators (AmR) is developed. The experiment for detection of H2 O and CO2 was carried out to evaluate the sensitivity and stability of the system. The results show that the noise characteristics of the double AmR configuration still agree with the single AmR configuration. The double AmRs spectrophone configuration exhibits a strong acoustic coupling between the AmRs and the quartz tuning fork, which results in about 5 ms fast response time. The normalized noise equivalent absorption coefficients (NNEAs) of the top and bottom channels are 7.8×10-9 cm-1W/√Hz and 8.1×10-9 cm-1W/√Hz, respectively. Moreover, the double AmRs provide two independent detection channels that allow optical signal addition or cancellation from different optical wavelengths and facilitate rapid multigas sensing measurements.
参考文献

[1] Khorsandi A, Shabani Z, Ranjbar M, et al. Application of a characterized difference-frequency laser source to carbon monoxide trace detection[J]. Chin. Phys. B, 2012, 21(6): 064213.

[2] Dong L, Zhang L, Dou H, et al. Analysis of the influence of various effects on frequency shifts of the acetylene saturated absorption lines[J]. Chin. Phys. B, 2008, 17(1): 152.

[3] 武红鹏, 董 磊, 郑华丹, 等. 基于微型非共振腔的石英增强光声光谱用于氦气纯度分析的实验研究[J]. 物理学报, 2013, 62(7): 070701.

    Wu Hongpeng, Dong Lei, Zheng Huadan, et al. Purity analysis of helium using quartz-enhanced photoacoustic spectroscopy with two non-resonant micro-tubes[J]. Acta Physica Sinica, 2013, 62(7): 070701(in Chinese).

[4] 郑华丹, 董 磊, 刘研研, 等. 石英晶振用于石英增强光声光谱系统的优化实验研究[J]. 光谱学与光谱分析, 2013, 33(12): 3187-3191.

    Zheng Huadan, Dong Lei, Liu Yanyan, et al. Experimental research on optimization of QEPAS based spectrophone[J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3187-3191(in Chinese).

[5] Kosterev A A, Tittel F K, Serebryakov D V, et al. Applications of quartz tuning forks in spectroscopic gas sensing[J]. Rev. Sci. Instrum., 2005, 76(4): 043105.

[6] Kosterev A A, Bakhirkin Y A, Curl R F, et al. Quartz-enhanced photoacoustic spectroscopy[J]. Opt. Lett., 2002, 27(21): 1902-1904.

[7] Dong L, Kosterev A A, Thomazy D, et al. QEPAS spectrophones: design, optimization, and performance[J]. Appl. Phys. B, 2010, 100(3): 627-635.

[8] Lewicki R, Wysocki G, Kosterev A A, et al. QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm[J]. Opt. Express, 2007, 15(12): 7357-7366.

[9] Miklós A, Hess P, Bozóki Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology[J]. Rev. Sci. Instrum., 2001, 72(4): 1937.

[10] Kosterev A A, Tittel F K. Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser[J]. AAPL Options, 2004, 43(33): 6213-6217.

[11] Spagnolo V, Dong L, Kosterev A A, et al. Modulation cancellation method in laser spectroscopy[J]. Appl. Phys. B, 2011, 103(3): 735-742.

[12] Dong L, Wright J, Peters B, et al. Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen[J]. Appl. Phys. B, 2012, 107(2): 459-467.

[13] Kosterev A A, Dong L, Thomazy D, et al. QEPAS for chemical analysis of multi-component gas mixtures[J]. Appl. Phys. B, 2010, 101(3): 649-659.

[14] Spagnolo V, Patimisco P, Borri S, et al. Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation[J]. Opt. Lett., 2012, 37(21): 4461-4463.

[15] Kosterev A A, Buerki P R, Dong L, et al. QEPAS detector for rapid spectral measurements[J]. Appl. Phys. B, 2010, 100(1): 173.

[16] Dong L, Kosterev A A, Thomazy D, et al. NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser[J]. Appl. Phys. B, 2010, 100: 627.

[17] Liu K, Yi H, Kosterev A A, et al. Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: Optimization and performance evaluation[J]. Rev. Sci. Instrum., 2010, 81(10): 103103.

[18] Petra N, Zweck J, Kosterev A A, et al. Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor[J]. Appl. Phys. B, 2009, 94(4): 673-680.

[19] Dong L, Spagnolo V, Lewicki R, et al. Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor[J]. Opt. Express, 2011, 19(24): 24037-24045.

武红鹏, 董磊, 郑华丹, 刘研研, 刘小利, 尹旭坤, 马维光, 张雷, 尹王保, 贾锁堂. 双通道石英增强光声光谱测声器的设计及实验研究[J]. 大气与环境光学学报, 2016, 11(1): 37. WU Hongpeng, DONG Lei, ZHENG Huadan, LIU Yanyan, LIU Xiaoli, YIN Xukun, MA Weiguang, ZHANG Lei, YIN Wangbao, JIA Suotang. Design and Experimental Research on Two Channel Quartz-Enhanced Photoacoustic Spectroscopy Spectrophone[J]. Journal of Atmospheric and Environmental Optics, 2016, 11(1): 37.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!