大气与环境光学学报, 2018, 13 (3): 193, 网络出版: 2018-06-01  

北京市交通环境大气氨污染水平分析

Analysis of Atmosoheric Ammonia Pollution Level in Beijing Traffic Environment
程刚 1,2段俊 3李金香 1,2,*秦敏 3王欣 1,2李云婷 1,2张大伟 1,2
作者单位
1 北京市环境保护监测中心, 北京 100048
2 大气颗粒物监测技术北京市重点实验室,北京 100048
3 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
摘要
机动车作为大气PM2.5的重要污染源,其运行产生的氨气(NH3)能与大气中的酸性气体相结合,形成二次污染物。为掌握北京市交通环境中NH3的排放情况, 探索影响交通环境NH3浓度的因素及关系,利用DOAS仪器对交通环境(北航东门天桥下)和城市环境(北京市环境保护监测中心楼顶)NH3的浓度进行 持续7个月的观测。结果显示污染物的排放量总体呈现夏季低、春秋季高的特点,交通环境中NH3的日平均浓度水平(25.19 μg /m3)高于 城市环境(15.90 μg /m3)。全天浓度变化趋势稳定,均有明显的高峰低谷变化,表明交通污染源对大气NH3的贡献较为稳定。从相关性分析 可以看出, NH3与PM2.5、NO2、NOx、CO相关性较高,与NO相关性较弱。分析得出3级以上的风有利于NH3浓度的快速扩散和降低。 对学院路全年各类型机动车排放量和逐小时的排放量进行计算,得到NH3排放量主要来自小型客车(汽油)和出租车(汽油)(占97.9%)。
Abstract
Ammonia(NH3) generated from vehicles which is an important source of atmospheric PM2.5 can react with the acidic gases in the atmosphere to produce ammonium salt. To understand the emission of atmospheric NH3 in the traffic environment of Beijing City, China, and find the factors which affect the NH3 concentration of traffic environment and relationship between them, NH3 concentration at two observation sites was collected during the seven-month observatory experiment using DOAS instrument. One observation site was located in a typical traffic environment close to the eastern gate of Beihang University (BH), the other one was located on the top of the seven-floor building in a typical downtown environment (BMEMC). The analytical result showed that the emission of pollutants is generally low in summer and high in spring and autumn and the 24 h NH3 concentration at the BH site (25.19 μg /m3) was higher than that at the BMEMC site (15.90 μg /m3). The change trend of concentration in whole day is stable, and there are obvious peaks and troughs, which indicates that the contribution of traffic pollution sources to NH3 is stable. The correlation analysis indicated that NH3 concentration was well correlated with the concentrations of PM2.5, NO2, NOx and CO, but only weakly correlated with the concentrations of NO. It is concluded that the wind above Grade 3 is beneficial to the rapid diffusion and reduction of ammonia concentration. After calculating the yearly emissions and hourly emissions of all types of motor vehicles in Xueyuan Road, the result shows that NH3 mainly comes from small passenger cars (gasoline) and taxis (gasoline) (97.9%).
参考文献

[1] 常运华.大气氮沉降中非农业源NH3排放对PM10的污染影响及PM2.5溯源研究[D].北京:中国科学院大学硕士论文, 2013.

    Chang Yunhua.The Effects of the Non-Agricultural NH3 Emissions on PM10 Pollution and the Source Attribution Analysis of PM2.5[D]. Beijing: Master’s Thesis of University of Chinese Academy of Sciences, 2013(in Chinese).

[2] 北京市公安局交通管理局.2000年以来交通管理相关数字[EB/OL]. http://www.bjjtgl.gov.cn/ jgj/ywsj/index.html, 2015.

    Traffic Management Bureau of Beijing Municipal Public Security. The digital related tothebureau traffic management since 2000[EB/OL]. http://www.bjjtgl.gov.cn/jgj/ywsj/index.html, 2015(in Chinese).

[3] Cadle S H ,Nebel G J, Williams R L. Measurements of unregulated emission from General Motors’ light-duty vehicles[R]. SAE Technical Paper, 1979.

[4] Urban C M, Garbe R J. Regulated and unregulated exhaust emission from malfunctioning vehicles[R]. SAE Technical Paper, 1979.

[5] Cadle S H, Mulawa P A. Low-molecular-weight aliphatic amines in exhaust from catalyst-equipped cars[J].Environmental Science and Technology, 1980, 14(6): 718-723.

[6] Fraser M P, Cass G R. Detection of excess ammonia emissions from in-use vehicles and the implications for fine particle control[J].Environmental Science and Technology, 1998, 32(8): 1053-1057.

[7] Moeckli M A, Fierz M, Sigrist M W. Emission factors for ethane and ammonia from a tunnel study with a photoacoustic trace gas detection system[J].Environmental Science and Technology, 1996, 30(9): 2864-2967.

[8] Shelef M, Gandhi H S. Ammonia formation in the catalytic reduction of nitric oxide. III. The role of water gas shift, reduction by hydrocarbons, and steam reforming[J].Industrial & Engineering Chemistry Product Research and Development, 1974, 13(1): 80-85.

[9] Gandhi H S, Shelef. Effects of sulphur on noble metal automotive catalysts[J].Applied Catalysis, 1991, 77(2): 175-186.

[10] Burgard D A., Bishop G A, Stedman D H. Remote sensing of ammonia and sulfur dioxide from on-rode light duty vehicles[J].Environmental Science and Technology, 2006, 40(22): 7018-7022.

[11] 张学典,黄 显, 徐可欣.差分吸收光谱反演方法在环境监测系统中的研究[J]. 光谱学与光谱分析, 2007, 27(11): 2367-2370.

    Zhang Xuedian, Huang Xian, Xu Kexin. Novel analysis algorithms for differential optical absorption spectroscopy for pollution monitoring[J].Spectroscopy and Spectral Analysis, 2007, 27(11): 2367-2370(in Chinese).

[12] 付 强, 谢品华, 王瑞斌. DOAS大气环境质量监测系统与传统点式采样监测法可比性研究[J]. 中国环境监测, 2003, 19(2): 26-28.

    Fu Qiang, Xie Pinhua, Wang Ruibin. The comparison test with DOAS and traditional sampler for air quality monitoring methods[J].Environmental Monitoring in China, 2003, 19(2): 26-28(in Chinese).

[13] Svante W,黄兆开, 范海华.DOAS方法在连续排放污染源及过程气体在线监测中的实现[J].环境工程技术学报,2011, 1(1): 38-45.

    Svante W, Huang Zhaokai, Fan Haihua. Using differential optical absorption spectroscopy (DOAS) for continuous emission monitoring and process gases[J].Journal of Environmental Engineering Technology, 2011, 1(1): 38-45(in Chinese).

[14] 周 斌,刘文清, 刘 峰, 等.差分吸收光谱仪测量上下限的确定[J].应用光学, 2001, 22(5): 25-28.

    Zhou Bin, Liu Wenqing, Liu Feng,et al. The determination of upper and lower limits of the differential optical absorption spectroscopy[J]. Journal of Applied Optics, 2001, 22(5): 25-28(in Chinese).

[15] 李素文,杨一军, 陈得宝, 等.利用DOAS技术同时反演气溶胶和大气痕量气体方法研究[J].光谱学与光谱分析, 2010, 30(8): 2292-2294.

    Li Suwen, Yang Yijun, Chen Debao,et al. A Study on retrieval of atmospheric aerosol parameters and trace gases based on differential optical absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(8): 2292-2294(in Chinese).

[16] 朱燕舞,付 强, 谢品华, 等.北京冬季大气污染物的DOAS监测与分析[J].光谱学与光谱分析,2009, 29(5): 1390-1393.

    Zhu Yanwu, Fu Qiang, Xie Pinhua,et al. Monitoring and analysis of air pollutants using DOAS in winter of Beijing[J]. Spectroscopy and Spectral Analysis, 2009, 29(5): 1390-1393(in Chinese).

[17] 黄志辉,陈伟程, 等.全国机动车污染物排放量-《2013年中国机动车污染防治年报》(第2部分)[J].环境与可持续发展, 2014, 39(1): 91-96.

    Huang Zhihui, Chen Weicheng,et al. The amount of vehicle emission by “China Vehicle Emission Control Annual Report in 2013”[J]. Environment and Sustainable Development, 2014, 39(1): 91-9(in Chinese).

[18] 程 轲,薛志钢, 张增强, 等. 机动车大气污染物排放清单构建的研究[J]. 环境污染与防治, 2009, 31(9): 76-81.

    Cheng Ke, Xue Zhigang, Zhang Zengqiang,et al. The study on the construction of emission inventory for air pollutants of motor vehicle[J]. Environmental Pollution and Control, 2009, 31(9): 76-81(in Chinese).

[19] 陈永林, 曹晓春, 吴柳柳, 等.汽车尾气排放量的计算方法[J]. 浙江交通职业技术学院学报, 2009, 10(3): 20-25.

    Chen Yonglin, Cao Xiaochun, Wu Liuliu,et al. The calculation method of exhaust emissions of automobile[J]. Journal of Zhejiang Institute of Communications, 2009, 10(3): 20-25(in Chinese).

[20] 张少君.中国典型城市机动车排放特征与控制策略研究[D].北京: 清华大学博士论文, 2014.

    Zhang Shaojun.Characteristics and Control Strategies of Vehicle Emissions in Typical Cities of China[D]. Beijing: Doctorial Dissertation of Tsinghua University, 2014(in Chinese).

[21] 蔡 皓, 谢绍东. 中国不同排放标准机动车排放因子的确定[J]. 北京大学学报:自然科学版, 2010, 4(3): 319-326.

    Cai Hao, Xie Shaodong. Determination of emission factors from motor vehicles under different emission standards in China[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 4(3): 319-32(in Chinese).

[22] 姚志良, 王岐东, 王新彤, 等. 典型城市机动车非常规污染物排放清单[J].环境污染与防治, 2011, 33(3): 96-101.

    Yao Zhiliang, Wang Qidong, Wang Xintong,et al. An emission inventory of unconventional pollutant of vehicle in typical urbans[J]. Environmental Pollution and Control, 2011, 33(3): 96-101(in Chinese).

[23] 严 晗.北京典型道路机动车污染物排放与浓度特征研究[D].北京: 清华大学硕士论文, 2014.

    Yan Han.Characterazing Emissions and Curb Concentrations of Vehicular Pollutants for Typical Roads in Beijing[D]. Beijing: Master’s thesis of Tsinghua University, 2014(in Chinese).

程刚, 段俊, 李金香, 秦敏, 王欣, 李云婷, 张大伟. 北京市交通环境大气氨污染水平分析[J]. 大气与环境光学学报, 2018, 13(3): 193. CHENG Gang, DUAN Jun, LI Jinxiang, QIN Min, WANG Xin, LI Yunting, ZHANG Dawei. Analysis of Atmosoheric Ammonia Pollution Level in Beijing Traffic Environment[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(3): 193.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!