光学 精密工程, 2018, 26 (12): 2971, 网络出版: 2019-01-27   

精密转台S曲线轨迹规划及高精度控制

S-curve trajectory planning and high-precision control of precision servo turntable
作者单位
国防科技大学 智能科学学院, 湖南 长沙 410007
摘要
为提升精密转台的轨迹运动精度, 本文从轨迹规划和运动控制两个方面对传统控制算法进行了改进。轨迹规划方面, 推导了S曲线轨迹规划方程, 并结合转台动力学约束条件给出了轨迹规划参数的取值方法, 从而为运动控制算法提供了满足动力学要求的轨迹指令; 运动控制方面, 在传统双闭环反馈控制基础上增加了DOB扰动补偿和前馈补偿, 以此改善转台的伺服性能, 提升转台的运动精度。在详细说明了轨迹规划算法和运动控制算法的设计过程后, 对两部分算法进行综合, 给出了具体实现步骤, 并以谐波转台和RV转台为实验对象进行了多组算法性能测试。实验结果表明: 相比于传统控制方法, 采用本文提出的方法能够使转台动态精度提升99.6%, 稳态精度提升99.75%, 从而证实了该算法对运动精度提升的有效性。
Abstract
Trajectory accuracy is an important performance indicator for precision turntables. To improve the motion accuracy, this study improves the traditional control algorithm from the perspective of trajectory planning and motion control. For trajectory planning, the S-curve trajectory planning equations are deduced, and the trajectory planning parameter values are given in combination with the dynamic constraints of the turntable. This provides the motion control algorithm with trajectory commands that meet the dynamic requirements. For motion control, on the basis of traditional double closed-loop feedback control, DOB disturbance compensation and feedforward compensation are added to improve the servo performance and motion accuracy of the turntable. After describing the design process of the trajectory planning and motion control algorithms in detail, the two algorithms are integrated, and the specific implementation steps are provided. The performance tests of the multiple groups of algorithms are performed using the harmonic turntable and the RV turntable. The experimental results show that, compared with the traditional control methods, the proposed method can significantly improve the dynamic accuracy of the turntable, thus verifying the effectiveness of the algorithm in improving the motion accuracy.
参考文献

[1] 穆海华, 周云飞, 严思杰, 等.超精密点对点运动三阶轨迹规划精度控制[J].机械工程学报, 2008, 44(1): 126-132.

    MU H H, ZHOU Y F, YAN S J, et al..Precision control of third-order profile planning for high accuracy point-to-point motion system[J].Chinese Journal of Mechanical Engineering, 2008, 44(1): 126-132.(in Chinese)

[2] NGUYEN K D, NG T C, CHEN I.On algorithms for planning S-curve motion profiles[J].International Journal of Advanced Robotic Systems, 2008, 5(1): 99-106.

[3] ZOU F, QU D, XU F.Asymmetric s-curve trajectory planning for robot point-to-point motion[C].IEEE International Conference on Robotics & Biomimetics, Guilin, P.R. China, 2009: 2172-2176.

[4] REW K H, KIM K S. Using asymmetric S-curve profile for fast and vibrationless motion[C]. International Conference on Control, Automation and Systems, Seoul, Korea, 2007, 12(10): 500-504.

[5] 邓永停, 李洪文, 刘京, 等.基于扰动力矩观测器的大口径望远镜低速控制[J].光学 精密工程, 2017, 25 (10): 2636-2644.

    DENG Y T, LI H W, LIU J, et al..Low-speed control of large telescope based on disturbance torque observer[J].Opt. Precision Eng., 2017, 25 (10): 2636-2644.(in Chinese)

[6] 杨锦涛, 姜文刚, 林永才.工业机器人冲击最优的轨迹规划算法[J].科学技术与工程, 2014, 14(28): 64-69.

    YANG J T, JIANG W G, LIN Y C.Jerk-optimal trajectory planning algorithm of industry robot[J].Science Technology and Engineering, 2014, 14(28): 64-69.(in Chinese)

[7] MECKL P H, SEERING W P.Minimizing residual vibration for point-to-point motion[J].Journal of Vibration & Acoustics, 1985, 107(4): 378-382.

[8] 陈忠泽, 颜国正, 林良明, 等.一种新的机械手最优轨迹的规划算法[J].光学精密工程, 2001, 9(3): 242-246.

    CHEN ZH Z, YAN G ZH, LIN L M, et al..Novel approach to generating optimal smooth trajectory for a manipulator[J].Opt. Precision Eng., 2001, 9 (3): 242-246.(in Chinese)

[9] 王远竹, 胡金高.伺服高速轨迹规划与精密跟踪控制的研究[J].微电机, 2017(11): 35-38.

    WANG Y ZH, HU J G.Research on servo high speed trajectory planning and precision tracking control[J].Micromotors, 2017, 50(11): 35-38.(in Chinese)

[10] 郝仁剑, 王军政, 李静, 等.基于功率及转矩约束的大惯量伺服系统速度规划[J].机械工程学报, 2014, 50 (3): 206-212.

    HAO R J, WANG J ZH, LI J, et al..Velocity planning for large inertia servo system based on power and torque constraints[J].Journal of Mechanical Engineering, 2014, 50(3): 206-212.(in Chinese)

[11] 李贤涛, 张晓沛, 毛大鹏, 等.高精度音圈快速反射镜的自适应鲁棒控制[J].光学 精密工程, 2017, 25(9): 2428-2436.

    LI X T, ZHANG X P, MAO D P, et al..Adaptive robust control over high-performance VCM-FSM[J].Opt. Precision Eng., 2017, 25(9): 2428-2436.(in Chinese)

[12] 张艳, 张淑梅, 乔彦峰.舰载光电设备参考模型扰动估的前馈控制[J].光学 精密工程, 2013, 21(5): 1213-1221.

    ZHANG Y, ZHANG SH M, QIAO Y F. Main axes AC servo control system for 2 m telescope[J].Opt. Precision Eng., 2013, 21(5): 1213-1221. (in Chinese)

祁超, 谢馨, 陈凌宇, 范世珣, 范大鹏. 精密转台S曲线轨迹规划及高精度控制[J]. 光学 精密工程, 2018, 26(12): 2971. QI Chao, XIE Xin, CHEN Ling-yu, FAN Shi-xun, FAN Da-peng. S-curve trajectory planning and high-precision control of precision servo turntable[J]. Optics and Precision Engineering, 2018, 26(12): 2971.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!