发光学报, 2017, 38 (4): 477, 网络出版: 2017-05-03   

GaN基肖特基势垒二极管结构优化研究进展

Progress on Structure Optimization of GaN Based Schottky Diode
作者单位
北京工业大学 光电子技术省部共建教育部重点实验室, 北京 100124
摘要
作为宽禁带半导体器件, GaN基肖特基势垒二极管(SBD)有耐高压、耐高温、导通电阻小等优良特性, 这使得它在电力电子等领域有广泛应用。本文首先综述了SBD发展要解决的问题; 然后, 介绍了GaN SBD结构、工作原理及结构优化研究进展; 接下来,总结了AlGaN/GaN SBD结构、工作原理及结构优化研究进展, 并着重从AlGaN/GaN SBD的外延片结构、肖特基电极结构以及边缘终端结构等角度, 阐述了这些结构的优化对AlGaN/GaN SBD性能的影响; 最后, 对器件进一步的发展方向进行了展望。
Abstract
As a wide band gap semiconductor device, GaN based Schottky barrier diode (SBD) has the characteristics of high voltage, high thermostability, low conduction resistance and other excellent characteristics, which makes it widely used in the field of power electronics. This paper first summarizes the problems to be solved in the development of SBD. Then, the structure, working principle and structure optimization of GaN SBD are introduced. Next, the structure, working principle and structure optimization of AlGaN/GaN SBD are summarized, and the effects of these structures on the performance of AlGaN/GaN SBDs are discussed from the perspective of epitaxial wafer structure, Schottky electrode structure and edge termination structure of AlGaN/GaN SBD.
参考文献

[1] MISHRA U K, PARIKH P, WU Y F. AlGaN/GaN HEMTs—an overview of device operation and applications [J]. Proc. IEEE, 2002, 90(6):1022-1031.

[2] SAITO W, NITTA T, KAKIUCHI Y, et al.. On-resistance modulation of high voltage GaN HEMT on sapphire substrate under high applied voltage [J]. IEEE Electron Dev. Lett., 2007, 28(8):676-678.

[3] 王磊. AlGaN/GaN肖特基势垒二极管制作工艺与器件特性研究 [D]. 北京: 清华大学, 2011.

    WANG L. Studies on Fabrication and Characteristics of AlGaN/GaN Schottky Barrier Diodes [D]. Beijing: Tsinghua University, 2011. (in Chinese)

[4] VON KLITZING K. The quantum Hall effect [J]. Phys. B, 1983, 117(2):6605-6612.

[5] KHAN A, BHATTARAI M, KUZNIA A, et al.. High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction [J]. Appl. Phys. Lett., 1993, 63(9):1214-1215.

[6] 祃龙, 王燕, 余志平, 等. AlGaN/GaN材料HEMT器件优化分析与I-V特性 [J]. 半导体学报, 2004, 25(10):1285-1290.

    MA L, WANG Y, YU Z P, et al.. AlGaN/GaN HEMT device optimization and I-V characteristics [J]. Chin. J. Semicond., 2004, 25(10):1285-1290. (in Chinese)

[7] MENG L. GaN power devices came into being, to create a new era of power applications [R/OL]. [2016-10-15].http://archive.eetchina.com/www.eet-china.com/ART_8800562744_640279_NT_7ec4972c.HTM.

[8] 李文雯. AlGaN/GaN肖特基二极管特性分析及结构优化 [D]. 西安: 西安电子科技大学, 2013.

    LI W W. Performance Study and Structure Optimization of AlGaN/GaN Schottky Diode [D]. Xian: Xidian University, 2013. (in Chinese)

[9] LEI Y, LU H. Influence of field plate on surface-state-related lag characteristics of AlGaN/GaN HEMT [J]. J. Semicond., 2015, 36(7):074007-1-4.

[10] BAIK K H, IROKAWA Y, REN F, et al.. Design of junction termination structures for GaN Schottky power rectifiers [J]. Solid-State Electron., 2003, 47(6):975-979.

[11] LEE S C, HA M W, LIM J Y, et al.. Suppression of leakage current of Ni/Au Schottky barrier diode fabricated on AlGaN/GaN heterostructure by oxidation [J]. Jap. J. Appl. Phys., 2006, 45(4B):3398-3400.

[12] MENEGHINI M, BERTIN M, STOCCO A, et al.. Degradation of AlGaN/GaN Schottky diodes on silicon: role of defects at the AlGaN/GaN interface [J]. Appl. Phys. Lett., 2013, 102(16):163501-1-3.

[13] MENEGHINI M, BERTIN M, DAL SANTO G, et al.. A novel degradation mechanism of AlGaN/GaN/Silicon heterostructures related to the generation of interface traps [C]. Proceedings of IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2012:13.3.1-13.3.4.

[14] 曹东升. GaN基肖特基二极管的输运和击穿特性研究 [D]. 南京: 南京大学, 2011.

    CAO D S. Study on Electrical Transport and Breakdown Characteristics of GaN-based Schottky Barrier Diodes [D]. Nanjing: Nanjing University, 2011. (in Chinese)

[15] AMANO H, SAWAKI N, AKASAKI I, et al.. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer [J]. Appl. Phys. Lett., 1986, 48(5):353-355.

[16] BANDIC Z Z, BRIDGER P M, PIQUETTE E C, et al.. High voltage (450 V) GaN Schottky rectifiers [J]. Appl. Phys. Lett., 1999, 74(9):1266-1268.

[17] JOHNSON J W, ZHANG A P, LUO W B, et al.. Breakdown voltage and reverse recovery characteristics of free-standing GaN Schottky rectifiers [J]. IEEE Trans. Electron Dev., 2002, 49(1):32-36.

[18] LEE S C, HER J C, KIM S S, et al.. A new vertical GaN Schottky barrier diode with floating metal ring for high breakdown voltage [C]. Proceedings of The 16th International Symposium on Power Semiconductor Devices and ICs, Kitakyushu, Japan, 2004:319-322.

[19] LEI Y, SHI H B, LU H, et al.. Field plate engineering for GaN-based Schottky barrier diodes [J]. J. Semicond., 2013, 34(5):054007.

[20] KON S, CAYREL F, YVON A, et al.. DLTS analysis of high resistive edge termination technique-induced defects in GaN-based Schottky barrier diodes [J]. Phys. Stat. Sol.(a): Appl. Mater. Sci., 2016, 213(9):2364-2370.

[21] YOSHIDA S, LI J, TAKEHARA H, et al.. Fabrication of AlGaN/GaN HFET with a high breakdown voltage of over 1 050 V [C]. Proceedings of IEEE International Symposium on Power Semiconductor Devices and ICs, Naples, Italy, 2006:1-4.

[22] MIYOSHI M, KURAOKA Y, ASAI K, et al.. Improved reverse blocking characteristics in AlGaN=GaN Schottky barrier diodes based on AlN template [J]. Electron. Lett., 2007, 43(17):953-954.

[23] LEE G Y, LIU H H, CHYI J I. High-performance AlGaN/GaN schottky diodes with an AlGaN/AlN buffer layer [J]. IEEE Electron Dev. Lett., 2011, 32(11):1519-1521.

[24] WEN H J, ZHANG J C, LU X L, et al.. Improved mobility of AlGaN channel heterojunction material using an AlGaN/GaN composite buffer layer [J]. Chin. Phys. B, 2014, 23(3):037302-1-4.

[25] KAMADA A, MATSUBAYASHI K, NAKAGAWA A, et al.. High-voltage AlGaN/GaN Schottky barrier diodes on Si substrate with low-temperature GaN cap layer for edge termination [C]. Proceedings of The 20th International Symposium on Power Semiconductor Devices and ICs, Orlando, FL, USA, 2008:225-228.

[26] LEE J H, JEONG J H, LEE J H. Enhanced electrical characteristics of AlGaN-based SBD with in situ deposited silicon carbon nitride cap layer [J]. IEEE Electron Dev. Lett., 2012, 33(4):492-494.

[27] KANG H, WANG Q, XIAO H L, et al.. Effects of a GaN cap layer on the reliability of AlGaN/GaN Schottky diodes [J]. Phys. Stat. Sol.(a): Appl. Mater. Sci., 2015, 212(5):1158-1161.

[28] L Y J, FENG Z H, LIN Z J, et al.. Comparison of electrical characteristic between AlN/GaN and AlGaN/GaN heterostructure Schottky diodes [J]. Chin. Phys. B, 2014, 23(2):27101-1-5.

[29] YOSHIDA S, LI J, IKEDA N, et al.. AlGaN/GaN field effect Schottky barrier diode (FESBD)[J]. Phys. Stat. Sol. (a): Appl. Mater. Sci., 2005, 2(7):2602-2606.

[30] TAKATANI K, NOZAWA T, OKA T, et al.. AIGaN/GaN Schottky-Ohmic combined anode field effect diode with fluoride-based plasma treatment [J]. Electron. Lett., 2008, 44(4):320-321.

[31] PARK K, PARK Y, HWANG S, et al.. 1 kV AlGaN/GaN power SBDs with reduced on resistances [C]. Proceedings of The 23rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), San Diego, CA, USA, 2011:223-226.

[32] BAHAT-TREIDEL E, HILT O, ZHYTNYTSKA R, et al.. Fast-switching GaN-Based lateral power Schottky barrier diodes with low onset voltage and strong reverse blocking [J]. IEEE Electron Dev. Lett., 2012, 33(3):357-359.

[33] TSOU C W, WEI K P, LIAN Y W, et al.. 2.07-kV AlGaN/GaN Schottky barrier diodes on silicon with high Baligas figure-of-merit [J]. IEEE Electron Dev. Lett., 2016, 37(1):70-73.

[34] LENCI S, DE JAEGER B, CARBONELL L, et al.. Au-free AlGaN/GaN power diode on 8-in Si substrate with gated edge termination [J]. IEEE Electron Dev. Lett., 2013, 34(8):1035-1037.

[35] LEE H S, DONG D Y, PARK Y, et al.. 0.34 VT AlGaN/GaN-on-Si large Schottky barrier diode with recessed dual anode metal [J]. IEEE Electron Dev. Lett., 2015, 36(11):1132-1134.

[36] YOSHIDA S, IKEDA N, LI J, et al.. High power AlGaN/GaN Schottky barrier diode with 1 000 V operation [J]. Mrs Online Proc. Libr., 2011, 892:0892-FF05-02.1-6.

[37] ZHU M D, SONG B, QI M, et al.. 1.9-kV AlGaN/GaN lateral Schottky barrier diodes on silicon [J]. IEEE Electron Dev. Lett., 2015, 36(4):375-377.

[38] LEE S C, HA M W, HER J C, et al.. High breakdown voltage GaN Schottky barrier diode employing floating metal rings on AlGaN/GaN hetero-junction [C]. Proceedings of The 17th International Symposium on Power Semiconductor Devices and ICs, Santa Barbara, CA, USA, 2005:247-250.

吴月芳, 郭伟玲, 陈艳芳, 雷亮. GaN基肖特基势垒二极管结构优化研究进展[J]. 发光学报, 2017, 38(4): 477. WU Yue-fang, GUO Wei-ling, CHEN Yan-fang, LEI Liang. Progress on Structure Optimization of GaN Based Schottky Diode[J]. Chinese Journal of Luminescence, 2017, 38(4): 477.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!