人工晶体学报, 2020, 49 (10): 1807, 网络出版: 2021-01-09  

溅射硒化物靶与金属单质靶制备Cu2ZnSnSe4薄膜及电池的比较研究

Comparative Study of Cu2ZnSnSe4 Thin Films Solar Cells Fabricated by Sputtering Selenide Targets and Metal Element Targets
作者单位
1 云南师范大学,云南省农村能源工程重点实验室,昆明 650500
2 云南师范大学,云南省光电技术重点实验室,昆明 650500
摘要
采用磁控溅射SnSe-ZnSe-Cu硒化物靶和Sn-Zn-Cu金属单质靶的方法制备两种Cu2ZnSnSe4(CZTSe)预制层,并将两种预制层采用相同的硒化工艺制备出CZTSe薄膜吸收层。分别采用XRD、Raman、SEM、EDS等分析了薄膜的晶体结构、相的纯度、表面及截面形貌和元素组分,结果发现采用硒化物靶制备的CZTSe吸收层薄膜更为平整致密且无明显孔洞。同时采用Hall测试和J-V测试对太阳电池薄膜的电学性质进行了表征,结果表明硒化物靶制备的CZTSe太阳电池的电流密度以及光电转化效率要高于金属单质靶,金属单质靶制备的CZTSe薄膜电池的开路电压为356 mV,短路电流密度为20.61 mA/cm2,光电转换效率为2.18%,而硒化物靶制备的CZTSe薄膜电池的开路电压为354 mV,短路电流密度为28.41 mA/cm2,光电转换效率为3.33%。
Abstract
Two kinds of Cu2ZnSnSe4(CZTSe) precursor layers were prepared by magnetron sputtering SnSe-ZnSe-Cu targets and metal Sn-Zn-Cu targets, respectively. The CZTSe absorber layers based on two kinds of precursors were prepared by using the same selenization process. The crystallization, phase purity, surface and section morphology and elemental constituents of CZTSe film were investigated by X-ray diffraction (XRD), Raman microscopy(Raman), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), respectively. It was found that the CZTSe adsorption layer film with more flat and dense surface as well as without any obvious holes were obtained by sputtering selenide targets. The electrical properties of solar cell films were characterized by Hall system and J-V testing. The results show that the current density and conversion efficiency of the CZTSe solar cells based on selenide targets are higher than that of CZTSe solar cells from metal element targets. The CZTSe thin film solar cells based on metal element targets obtain a photoelectric conversion efficiency of 2.18% with an open circuit voltage of 356 mV and a short circuit current density of 20.61 mA/cm2, while the photoelectric conversion efficiency of CZTSe thin film solar cells prepared by selenide targets is 3.33% with an open circuit voltage of 354 mV and a short circuit current density of 28.41 mA/cm2.
参考文献

[1] Solar frontier press release. Solar frontier achieves world record thin-film solar cell effiiciency of 23.35%[EB/OL].(2019-01-17). http://www.solar-frontier.com/eng/news/2019/0117_press.html.

[2] Katagiri H, Jimbo K, Maw W S, et al. Development of CZTS-based thin film solar cells[J]. Thin Solid Films, 2009, 517(7): 2455-2460.

[3] Chang Y, Jialiang H, Kaiwen S, et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment[J]. Nature Energy, 2018(3): 764-772.

[4] Repins I, Beall C, Vora N, et al. Co-evaporated Cu2ZnSnSe4 films and devices[J]. Solar Energy Materials & Solar Cells, 2012, 101: 154-159.

[5] Vanalakar S A, Agawane G L, Shin S W. et al. A review on pulsed laser deposited CZTS thin films for solar cell applications[J]. Journal of Alloys & Compounds, 2015, 619: 109-121.

[6] Fu J, Tian Q W, Zhou Z J, et al. Improving the performance of solution-processed Cu2ZnSn(S,Se)4 photovoltaic materials by Cd2+ substitution[J]. Chemistry of Materials, 2016, 28: 5821-5828.

[7] Wang W, Winkler M T, Gunawan O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7): 1301465.

[8] Adelifard M, Torkamani R. Spray deposited Cu2ZnSnS4 nanostructured absorber layer a promising candidate for solar cell applications[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(6): 3700-3706.

[9] Chen S, Walsh A, Yang J H, et al. Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells[J]. Physical Review B Condensed Matter, 2011, 83(12): 113-115.

[10] Wibowo R A, Kim W S, Lee E S, et al. Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide targets[J]. Journal of Physics and Chemistry of Solids, 2007, 68(10): 1908-1913.

[11] Zoppi G, Forbes I, Miles R W, et al. Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors[J]. Progress in Photovoltaics: Research and Applications, 2009, 17(5): 315-319.

[12] Wooseok K, Hugh W H. Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent[J]. Advanced Energy Materials, 2011, 1: 732-735.

[13] Yun S L, Gershon T, Gunawan O, et al. Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length[J]. Advanced Energy Materials, 2015, 5(7): 1401372.

[14] Yao L, Ao J, Jeng M J, et al. A CZTSe solar cell with 8.2% power conversion efficiency fabricated using electrodeposited Cu/Sn/Zn precursor and a three-step selenization process at low Se pressure[J]. Solar Energy Materials and Solar Cells, 2017, 159: 318-324.

[15] Taskesen T, Neerken J, Schoneberg J, et al. Device characteristics of an 11.4% CZTSe solar cell fabricated from sputtered precursors[J]. Advanced Energy Materials, 2018, 8(16): 1703295.1-1703295.6.

[16] Zhang Z J, Gao Q, Guo J J, et al. Over 10% efficient pure CZTSe solar cell fabricated by electrodeposition with Ge doping[J]. Solar RRL,2020, 4(5): 2000059.

[17] Li J J, Mai Y H, Chen S Y, et al. Defect control for 12.5% efficiency Cu2ZnSnSe4 kesterite thin-film solar cells by engineering of local chemical environment[C].第七届新型太阳能电池材料科学与技术学术研讨会论文集.中国可再生能源学会光化学专业委员会(Photochemistry Committee of Chinese Renewable Energy Society):中国科学院物理研究所清洁能源实验室,2020:297.

[18] Li J, Kim S Y, Nam D, et al. Tailoring the defects and carrier density for beyond 10% efficient CZTSe thin film solar cells[J]. Solar Energy Materials and Solar Cells, 2017, 159: 447-455.

[19] Stefan G H, Matthias D, Melanie W, et al. 11.2% efficient solution processed kesterite solar cell with a low voltage deficit[J]. Advanced Energy Materials, 2015, 5(18): 1500712.

[20] Kim S Y, Son D H, Kim Y I, et al. Void and secondary phase formation mechanisms of CZTSSe using Sn/Cu/Zn/Mo stacked elemental precursors[J]. Nano Energy, 2019, 59: 399-411.

[21] Djemour R, Mousel M, Redinger A, et al. Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence[J]. Applied Physics Letters, 2013, 102(22): 222108.

[22] Just J, Sutter-Fella C M, Lützenkirchen-Hecht, et al. Secondary phases and their influence on the composition of the kesterite phase in CZTS and CZTSe thin films[J]. Phys Chem Chem Phys,2016:10.1039.C6CP00178E.

[23] Hwang D K, Ko B S, Jeon D H, et al. Single-step sulfo-selenization method for achieving low open circuit voltage deficit with band gap front-graded Cu2ZnSn(S,Se)4 thin films[J]. Solar Energy Materials and Solar Cells, 2017, 161: 162-169.

[24] Li X, Zhuang D, Zhang N, et al. Achieving 11.95% efficient Cu2ZnSnSe4 solar cells fabricated by sputtering a Cu-Zn-Sn-Se quaternary compound target with a selenization process[J]. Journal of Materials Chemistry A, 2019, 7(16): 9948-9957.

[25] Wei Y, Zhuang D, Zhao M, et al. An investigation on phase transition for as-sputtered Cu2ZnSnSe4 absorbers during selenization[J]. Solar Energy, 2018, 164(APR.): 58-64.

[26] Olgar M A, Atasoy Y, Ba瘙塂ol B M, et al. Influence of copper composition and reaction temperature on the properties of CZTSe thin films[J]. Journal of Alloys & Compounds, 2016, 682: 610-617.

李祥, 王书荣, 廖华, 杨帅, 李新毓, 王亭保, 李晶金, 李秋莲, 刘信. 溅射硒化物靶与金属单质靶制备Cu2ZnSnSe4薄膜及电池的比较研究[J]. 人工晶体学报, 2020, 49(10): 1807. LI Xiang, WANG Shurong, LIAO Hua, YANG Shuai, LI Xinyu, WANG Tingbao, LI Jingjin, LI Qiulian, LIU Xin. Comparative Study of Cu2ZnSnSe4 Thin Films Solar Cells Fabricated by Sputtering Selenide Targets and Metal Element Targets[J]. Journal of Synthetic Crystals, 2020, 49(10): 1807.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!