激光与光电子学进展, 2020, 57 (1): 012701, 网络出版: 2020-01-03   

原子-微腔耦合系统的远程量子相干及量子相变 下载: 1015次

Long-Range Quantum Coherenceand Quantum Phase Transition in Atom-Microcavity Coupled System
作者单位
苏州科技大学数理学院, 江苏 苏州 215009
引用该论文

杨志远, 邵雅婷, 吴泉英, 郝翔. 原子-微腔耦合系统的远程量子相干及量子相变[J]. 激光与光电子学进展, 2020, 57(1): 012701.

Zhiyuan Yang, Yating Shao, Quanying Wu, Xiang Hao. Long-Range Quantum Coherenceand Quantum Phase Transition in Atom-Microcavity Coupled System[J]. Laser & Optoelectronics Progress, 2020, 57(1): 012701.

参考文献

[1] Amico L, Fazio R, Osterloh A, et al. Entanglement in many-body systems[J]. Reviews of Modern Physics, 2008, 80(2): 517-576.

[2] Hillery M. Coherence as a resource in decision problems: the Deutsch-Jozsa algorithm and a variation[J]. Physical Review A, 2016, 93(1): 012111.

[3] Imran M, Tariq H. Rameez-ul-islam, et al. Doubly tagged delayed-choice tunable quantum eraser: coherence, information and measurement[J]. Laser Physics Letters, 2018, 15(1): 015205.

[4] Zhang G Q, Xu J B. Quantum coherence of an XY spin chain with Dzyaloshinskii-Moriya interaction and quantum phase transition[J]. Journal of Physics A: Mathematical and Theoretical, 2017, 50(26): 265303.

[5] 何业锋, 杨红娟, 王登, 等. 基于标记配对相干态和轨道角动量的量子密钥分配[J]. 光学学报, 2019, 39(4): 0427001.

    He Y F, Yang H J, Wang D, et al. Quantum key distribution based on heralded pair coherent state and orbital angular momentum[J]. Acta Optica Sinica, 2019, 39(4): 0427001.

[6] Baumgratz T, Cramer M, Plenio M. Quantifying coherence[J]. Physical Review Letters, 2014, 113(14): 140401.

[7] Shi X, Yuan H, Mao X, et al. Robust quantum state transfer inspired by Dzyaloshinskii-Moriya interactions[J]. Physical Review A, 2017, 95(5): 052332.

[8] Zhang Y Z, Yan T M, Jiang Y H. Ultrafast mapping of coherent dynamics and density matrix reconstruction in a terahertz-assisted laser field[J]. Physical Review Letters, 2018, 121(11): 113201.

[9] Chitambar E, Streltsov A, Rana S, et al. Assisted distillation of quantum coherence[J]. Physical Review Letters, 2016, 116(7): 070402.

[10] Bloch I. Quantum coherence and entanglement with ultracold atoms in optical lattices[J]. Nature, 2008, 453(7198): 1016-1022.

[11] Buluta I, Ashhab S, Nori F. Natural and artificial atoms for quantum computation[J]. Reports on Progress in Physics, 2011, 74(10): 104401.

[12] Hanson R, Kouwenhoven L P, Petta J R, et al. Spins in few-electron quantum dots[J]. Reviews of Modern Physics, 2007, 79(4): 1217-1265.

[13] Jaksch D, Bruder C, Cirac J I, et al. Cold bosonic atoms in optical lattices[J]. Physical Review Letters, 1998, 81(15): 3108-3111.

[14] Greiner M, Mandel O, Esslinger T, et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms[J]. Nature, 2002, 415(6867): 39-44.

[15] Yu Z F, Chai X D, Xue J K. Energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice[J]. Physics Letters A, 2018, 382(18): 1231-1237.

[16] Flottat T, Hébert F, et al. Phase diagram of bosons in a two-dimensional optical lattice with infinite-range cavity-mediated interactions[J]. Physical Review B, 2017, 95(14): 144501.

[17] Hartmann M J. Brandão F G S L, Plenio M B. Effective spin systems in coupled microcavities[J]. Physical Review Letters, 2007, 99(16): 160501.

[18] Chen Z X, Zhou Z W, Zhou X X, et al. Quantum simulation of Heisenberg spin chains with next-nearest-neighbor interactions in coupled cavities[J]. Physical Review A, 2010, 81(2): 022303.

[19] Porras D, Cirac J I. Effective quantum spin systems with trapped ions[J]. Physical Review Letters, 2004, 92(20): 207901.

[20] James D F V. Quantum computation with hot and cold ions: an assessment of proposed schemes[J]. Fortschritte der Physik, 2000, 48(9/10/11): 823-837.

[21] Barouch E. McCoy B M, Dresden M. Statistical mechanics of the XY Model. I[J]. Physical Review A, 1970, 2(3): 1075-1092.

[22] Cai J M, Zhou Z W, Guo G C. Robustness of entanglement as a signature of quantum phase transitions[J]. Physics Letters A, 2006, 352(3): 196-201.

[23] Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81(2): 865-942.

[24] Chen Q, Zhang C J, Yu S X, et al. Quantum discord of two-qubit X states[J]. Physical Review A, 2011, 84(4): 042313.

[25] Vedral V. The role of relative entropy in quantum information theory[J]. Reviews of Modern Physics, 2002, 74(1): 197-234.

[26] 王国友, 郭有能. 基于量子反馈保护量子比特的相干性[J]. 激光与光电子学进展, 2018, 55(10): 102702.

    Wang G Y, Guo Y N. Protection of quantum coherence of qubit based on quantum feedback[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102702.

[27] Liu YX, Zhang SL, HeL, et al. and its statistical physicalproperties[J/OL]. ( 2019-01-01)[2019-08-07]. org/abs/1902. 00217. https://arxiv.

[28] 徐玉虎, 任学藻, 刘雪莹. 两任意量子比特Rabi模型的纠缠演化特性[J]. 光学学报, 2018, 38(1): 0127001.

    Xu Y H, Ren X Z, Liu X Y. Entanglement evolution characteristics of quantum Rabi models with two arbitrary qubits[J]. Acta Optica Sinica, 2018, 38(1): 0127001.

[29] 闫丽. 两子系统间纠缠演化特性[J]. 激光与光电子学进展, 2017, 54(3): 032701.

    Yan L. Evolution property of entanglement between two subsystems[J]. Laser & Optoelectronics Progress, 2017, 54(3): 032701.

杨志远, 邵雅婷, 吴泉英, 郝翔. 原子-微腔耦合系统的远程量子相干及量子相变[J]. 激光与光电子学进展, 2020, 57(1): 012701. Zhiyuan Yang, Yating Shao, Quanying Wu, Xiang Hao. Long-Range Quantum Coherenceand Quantum Phase Transition in Atom-Microcavity Coupled System[J]. Laser & Optoelectronics Progress, 2020, 57(1): 012701.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!