人工晶体学报, 2020, 49 (4): 744, 网络出版: 2020-06-15   

石墨氮化碳光催化剂的制备及其改性研究进展

Research Progress on Preparation and Modification of Graphite Carbon Nitride Photocatalyst
作者单位
1 佛山科学技术学院交通与土木建筑学院,佛山 528000
2 佛山科学技术学院环境与化学工程学院,佛山 528000
摘要
石墨氮化碳(g-C3N4)是一种可见光响应的非金属半导体材料。g-C3N4具有廉价易得,物理化学性质稳定,无毒无污染等优点,在环境净化和能源催化领域具有良好的应用前景。然而,体相g-C3N4存在比表面积小,可见光吸收能力差,光生电子和空穴复合效率高等缺点,从而严重限制了其在实际中的应用。本文在概述了g-C3N4的结构、特性及制备方法的基础上,着重归纳了g-C3N4的改性方法,其中包括元素掺杂、形貌调控、贵金属沉积等改性手段的研究进展。最后,本文探讨了g-C3N4光催化反应机理,以及对g-C3N4在水体环境净化领域的研究进行了展望。
Abstract
Graphite carbon nitride (g-C3N4) is a non-metallic semiconductor material with visible light response. g-C3N4 has the characteristics of low cost and easy availability, stable physical and chemical properties, non-toxic and non-polluting, and has good application prospects in the field of environmental purification and energy catalysis. However, the bulk phase g-C3N4 has such shortcomings as small specific surface area, poor visible light absorption ability, and high recombination efficiency of photogenerated electrons and holes, which severely limit its application in practice. In this paper, based on the introduction of the structure, characteristics and preparation methods of g-C3N4, the modification methods of g-C3N4 are mainly summarized, including the research progress of the modification methods such as element doping, morphology control, precious metal deposition and so on. Finally, the reaction mechanism of g-C3N4 in photocatalytic reaction is discussed, and the research of g-C3N4 photocatalyst in the field of purification of water environment is prospected.
参考文献

[1] Gong X, Huang D, Liu Y, et al. Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of boehmeria nivea (L.) gaudich cultivated in cadmium contaminated sediments[J].Environmental science & technology,2017,51(19):11308-11316.

[2] Guo X, Peng Z, Huang D, et al. Biotransformation of cadmium-sulfamethazine combined pollutant in aqueous environments:phanerochaete chrysosporium bring cautious optimism[J].Chemical Engineering Journal,2018,347:74-83.

[3] Huang D, Xue W, Zeng G, et al. Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron:impact on enzyme activities and microbial community diversity[J].Water research,2016,106:15-25.

[4] Wang M, Guo P, Chai T, et al. Effects of Cu dopants on the structures and photocatalytic performance of cocoon-Like Cu-BiVO4 prepared via ethylene glycol solvothermal method[J].Journal of Alloys & Compounds,2017,691:8-14.

[5] Huang Y, Lu Y, Lin Y, et al. Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants[J].Journal of Materials Chemistry A,2018,6(48):24740-24747.

[6] Ye K, Li Y, Yang H, et al. An Ultrathin carbon layer activated CeO2 heterojunction nanorods for photocatalytic degradation of organic pollutants[J].Applied Catalysis B:Environmental,2019,259:118085.

[7] 李佳宇,李法云,王艳杰,等.石墨相氮化碳及其改性对有机污染物的光催化降解[J].环境保护科学,2018,44(5):60-66.

[8] 李 娟,赵 丹,马占强.石墨相氮化碳基复合光催化剂的研究进展[J].人工晶体学报,2018,47(7):1491-1499.

[9] Meng Y, Zhang L, Jiu H, et al. Construction of g-C3N4/ZIF-67 photocatalyst with enhanced photocatalytic CO2 reduction activity[J].Materials Science in Semiconductor Processing,2019,95:35-41.

[10] Tang J, Guo R, Pan W, et al. Visible light activated photocatalytic behaviour of Eu (III) modified g-C3N4 for CO2 reduction and H2 evolution[J].Applied Surface Science,2019,467:206-212.

[11] Liu E, Jin C, Xu C, et al. Facile strategy to fabricate Ni2P/g-C3N4 heterojunction with excellent photocatalytic hydrogen evolution activity[J].International Journal of Hydrogen Energy,2018,43(46):21355-21364.

[12] Mo Z, Xu H, Chen Z, et al. Construction of MnO2/Monolayer g-C3N4 with Mn vacancies for Z-scheme overall water splitting[J].Applied Catalysis B:Environmental,2019,241:452-460.

[13] Cui Y, Zhang X, Zhang H, et al. Construction of BiOCOOH/g-C3N4 composite photocatalyst and its enhanced visible light photocatalytic degradation of amido black 10B[J].Separation and Purification Technology,2019,210:125-134.

[14] Zhao H, Li G, Tian F, et al. g-C3N4 Surface-decorated Bi2O2CO3 for improved photocatalytic performance:theoretical calculation and photodegradation of antibiotics in actual water matrix[J].Chemical Engineering Journal,2019,366:468-479.

[15] Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation:are we a step closer to achieving sustainability?[J].Chemical reviews,2016,116(12):7159-7329.

[16] Kroke E, Schwarz M, Horath-Bordon E, et al. Tri-S-Triazine derivatives. part I. from trichloro-tri-s-triazine to graphitic C3N4 structures[J].New Journal of Chemistry,2002,26(5):508-512.

[17] Masih D, Ma Y, Rohani S. Graphitic C3N4 based noble-metal-free photocatalyst systems:a review[J].Applied Catalysis B:Environmental,2017,206:556-588.

[18] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J].Nature Materials,2008,8(1):76-80.

[19] Hu C, Chu Y C, Wang M S, et al. Rapid synthesis of g-C3N4 spheres using microwave-assisted solvothermal method for enhanced photocatalytic activity[J].Journal of Photochemistry and Photobiology A:Chemistry,2017,348:8-17.

[20] Cui Y, Ding Z, Fu X, et al. Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis[J].Angewandte Chemie International Edition,2012,51(47):11814-11818.

[21] Li C, Cao C B, Zhu H S, et al. Electrodeposition route to prepare graphite-like carbon nitride[J].Materials Science and Engineering:B,2004,106(3):308-312.

[22] Guo Q, Yang Q, Yi C, et al. Synthesis of carbon nitrides with graphite-like or onion-like lamellar structures via a solvent-free route at low temperatures[J].Carbon,2005,43(7):1386-1391.

[23] Zhang Z, Leinenweber K, Bauer M, et al. High-pressure bulk synthesis of crystalline C6N9H3?HCl:a novel C3N4 graphitic derivative[J].Journal of the American Chemical Society,2001,123(32):7788-7796.

[24] Long B, Lin J, Wang X. Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis[J].Journal of Materials Chemistry A,2014,2(9):2942-2951.

[25] Wang Y, Shi R, Lin J, et al. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4[J].Energy & Environmental Science,2011,4(8):2922-2929.

[26] Song Y, Qi J, Tian J, et al. Construction of Ag/g-C3N4 photocatalysts with visible-light photocatalytic activity for sulfamethoxazole degradation[J].Chemical Engineering Journal, 2018, 341:547-555.

[27] 万建新, 任学昌, 刘宏伟, 等. ZnO/g-C3N4 复合型光催化剂的制备及其光催化性能[J].环境化学, 2018, 37(4):792-797.

[28] Chen K L, Zhang S S, Yan J Q, et al. Excellent visible light photocatalytic efficiency of Na and S co-doped g-C3N4 nanotubes for H2 production and organic pollutant degradation[J].International Journal of Hydrogen Energy, 2019, 44(60):31916-31929.

[29] Ma W, Wang N, Guo Y, et al. Enhanced photoreduction CO2 activity on g-C3N4:by synergistic effect of nitrogen defective-enriched and porous structure, and mechanism insights[J].Chemical Engineering Journal, 2020:124288.

[30] Tahir B, Tahir M, Amin N A S. Silver loaded protonated graphitic carbon nitride (Ag/Pg-C3N4) nanosheets for stimulating CO2 reduction to fuels via photocatalytic Bi-reforming of methane[J].Applied Surface Science, 2019, 493:18-31.

[31] Yang C, Tan Q, Li Q, et al. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst:dual effects of urea[J].Applied Catalysis B:Environmental, 2020:118738.

[32] Wang M, Guo P, Zhang Y, et al. Synthesis of hollow lantern-like Eu(III)-doped g-C3N4, with enhanced visible light photocatalytic perfomance for organic degradation[J].Journal of Hazardous Materials, 2018, 349:224-233.

[33] Yan Q,Huang G F,Li D F, et al. Facile synthesis and superior photocatalytic and electrocatalytic performances of porous B-doped g-C3N4 nanosheets[J].Journal of Materials Science & Technology, 2018, 34(12):2515-2520.

[34] Wang K, Fu J, Zheng Y. Insights into photocatalytic CO2 reduction on C3N4:strategy of simultaneous B, K co-Doping and enhancement by N vacancies[J].Applied Catalysis B:Environmental, 2019, 254:270-282.

[35] Chen D,Liu J,Jia Z, et al. Efficient Visible-light-driven hydrogen evolution and Cr (VI) reduction over porous P and Mo co-doped g-C3N4 with feeble N vacancies photocatalyst[J].Journal of hazardous materials, 2019, 361:294-304.

[36] Wu X, Wang X, Wang F, et al. Soluble g-C3N4 nanosheets:facile synthesis and application in photocatalytic hydrogen evolution[J].Applied Catalysis B:Environmental, 2019, 247:70-77.

[37] Chen Y, Ding F, Khaing A, et al. Acetic acid-assisted supramolecular assembly synthesis of porous g-C3N4 hexagonal prism with excellent photocatalytic activity[J].Applied Surface Science, 2019, 479:757-764.

[38] Wang W, Shu Z, Zhou J, et al. Halloysite-derived mesoporous g-C3N4 nanotubes for improved visible-light photocatalytic hydrogen evolution[J].Applied Clay Science, 2018, 158:143-149.

[39] Ling Y, Liao G, Xu P, et al. Fast mineralization of acetaminophen by highly dispersed Ag-g-C3N4 hybrid assisted photocatalytic ozonation[J].Separation and Purification Technology, 2019, 216:1-8.

[40] Qian X B, Peng W, Huang J H. Fluorescein-sensitized Au/g-C3N4 nanocomposite for enhanced photocatalytic hydrogen evolution under visible light[J].Materials Research Bulletin, 2018, 102:362-368.

[41] Zhu Y, Wang T, Xu T, et al. Size effect of Pt co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution[J].Applied Surface Science, 2019, 464:36-42.

[42] Yang L, Liang L, Wang L, et al. Accelerated photocatalytic oxidation of carbamazepine by a Novel 3D hierarchical protonated g-C3N4/BiOBr heterojunction:performance and mechanism[J].Applied Surface Science, 2019, 473:527-539.

[43] Li G, Wang B, Zhang J, et al. Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline[J].Applied Surface Science, 2019, 478:1056-1064.

[44] Li C, Yu S, Dong H, et al. Z-Scheme mesoporous photocatalyst constructed by modification of Sn3O4 nanoclusters on g-C3N4 nanosheets with improved photocatalytic performance and mechanism insight[J].Applied Catalysis B:Environmental, 2018, 238:284-293.

[45] Zhang S, Gu P, Ma R, et al. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification:a critical review[J].Catalysis Today, 2019, 335:65-77.

[46] Xiao T, Tang Z, Yang Y, et al. In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-Scheme Photocatalyst for the Degradation of Antibiotics[J].Applied Catalysis B:Environmental, 2018, 220:417-428.

[47] Wen J, Xie J, Chen X, et al. A review on g-C3N4-based photocatalysts[J].Applied surface science, 2017, 391:72-123.

[48] Che H, Li C, Zhou P, et al. Band structure engineering and efficient injection rich-π-electrons into ultrathin g-C3N4 for boosting photocatalytic H2-production[J].Applied Surface Science, 2019:144564.

赖树锋, 肖开棒, 梁锦芝, 林锴淳, 许伟城, 江学顶. 石墨氮化碳光催化剂的制备及其改性研究进展[J]. 人工晶体学报, 2020, 49(4): 744. LAI Shufeng, XIAO Kaibang, LIANG Jinzhi, LIN Kaichun, XU Weicheng, JIANG Xueding. Research Progress on Preparation and Modification of Graphite Carbon Nitride Photocatalyst[J]. Journal of Synthetic Crystals, 2020, 49(4): 744.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!