作者单位
摘要
华北电力大学 环境科学与工程学院, 资源环境系统优化教育部重点实验室, 北京 102206
近年来, 利用石墨氮化碳(g-C3N4)光催化法将易溶的U(VI)还原为难溶的U(IV)来清除铀, 已逐渐成为放射性核素研究的热点。本研究将一种含金属钴的金属有机框架材料(MOFs)作为自牺牲模板, 利用简单热共聚法成功合成了含有Co-Nx构型的CoNx/g-C3N4催化剂。在固液比为1.0 g/L、pH 5.0、可见光照射45 min下, 制备的催化剂(w(Co-MOFs) : w(g-C3N4)=1 : 1)对50 mg/L的U(VI)标准溶液还原率达到100%。从形貌, 微观结构和光学性能等方面对催化剂进行了表征,结果显示, 引入Co有效拓宽了g-C3N4对可见光的吸收范围, 抑制了光生电子与空穴的复合, 从而促进了U(VI)的还原反应。此外, 基于捕获实验深入探究了U(VI)在CoNx/g-C3N4材料表面催化可能的反应机理。研究表明, CoNx/g-C3N4复合光催化剂光学性能优异, 制备方法简单且绿色环保, 对放射性废水中的U(VI)的光催化还原去除效果较好。本工作对后续石墨氮化碳类新型材料的设计、合成与实际应用具有一定的参考作用。
石墨氮化碳(g-C3N4) 金属有机框架材料(MOF) 光催化还原  graphite carbon nitride (g-C3N4) metal organic framework (MOF) photocatalytic reduction uranium 
无机材料学报
2022, 37(7): 741
作者单位
摘要
1 佛山科学技术学院交通与土木建筑学院,佛山 528000
2 佛山科学技术学院环境与化学工程学院,佛山 528000
石墨氮化碳(g-C3N4)是一种可见光响应的非金属半导体材料。g-C3N4具有廉价易得,物理化学性质稳定,无毒无污染等优点,在环境净化和能源催化领域具有良好的应用前景。然而,体相g-C3N4存在比表面积小,可见光吸收能力差,光生电子和空穴复合效率高等缺点,从而严重限制了其在实际中的应用。本文在概述了g-C3N4的结构、特性及制备方法的基础上,着重归纳了g-C3N4的改性方法,其中包括元素掺杂、形貌调控、贵金属沉积等改性手段的研究进展。最后,本文探讨了g-C3N4光催化反应机理,以及对g-C3N4在水体环境净化领域的研究进行了展望。
石墨氮化碳 光催化 制备方法 改性 graphite carbon nitride photocatalysis preparation modification 
人工晶体学报
2020, 49(4): 744

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!