液晶与显示, 2016, 31 (7): 643, 网络出版: 2016-08-29  

基于PVK/PbS纳米晶有机无机复合薄膜电双稳器件性能研究

Organic/inorganic composite electrical bistable devices based on composite of poly(N-vinylcarbazole) and lead sulfide nanocrystals
作者单位
1 北京交通大学 理学院 物理系, 北京100044
2 北京交通大学 理学院 光电子技术研究所, 北京100044
摘要
通过简单旋涂方法, 制备了一种基于硫化铅(PbS)纳米晶与聚乙烯基咔唑(PVK)的有机/无机复合薄膜电双稳器件, 并对所制备的器件进行性能测试及其电荷传输机制研究。首先采用热注入的方法制备了尺寸均一的立方形PbS纳米晶, 然后将PbS纳米晶与PVK聚合物混合作为活性层材料, 制备了有机/无机复合薄膜电双稳器件。该器件展示了良好的电双稳特性并且可以实现稳定的“读-写-读-擦”操作。器件的最大电流开关比能够达到104。并进一步对器件在正向电压下的I-V曲线进行了理论拟合, 发现在不同电流传导状态下, 器件符合不同的电传导模型。进而分析了该电双稳器件中的电荷传输机制, 认为在电场的作用下, 发生在纳米晶与聚合物之间的电场诱导电荷转移是产生电双稳特性的主要原因。
Abstract
An organic / inorganic composite electrical bistable device has been fabricated by utilizing hybrid lead sulfide (PbS) nanocomposite and poly(N-vinylcarbazole) (PVK) film. And the device performance has been tested in order to analyze the charge transport mechanism. First,the cube-shaped PbS nanocrystals were synthesized by the thermal injection method, then electrical bistable device was fabricated by utilizing composite of poly(N-vinylcarbazole) and lead sulfide nanocrystals as the active layer.The device exhibits significant electrical bistability and repeatable operation of “read-write-read-erase” is also achieved. The maximum current ratio between the high-conducting state (ON state) and low-conducting state (OFF state) can reach up to 104. The carrier transport mechanisms in the positive voltage region of the ON state and OFF state are described by using different conduction models, respectively.The observed conductance switching is attributed to the electric-field-induced charge transfer between the nanocrystals and the polymer, and charge trapping/detrapping in the nanocrystals.
参考文献

[1] MUKHERJEE B, MUKHERJEE M. Nonvolatile memory device based on Ag nanoparticle: Characteristics improvement [J]. Applied Physics Letters, 2009, 94(17): 173510.

[2] 张锋, 薛建设, 喻志农, 等.量子点发光在显示器件中的应用[J].液晶与显示, 2012, 27(2): 163-167.

    ZHANG F, XUE J S, YU Z N, et al. Quantum-dot light emitting device for displays [J].Chinese Journal of Liquid Crystals and Displays, 2012, 27(2): 163-167. (in Chinese)

[3] VERBAKEL F, MESKERS S C J, JANSSEN R A J. Electronic memory effects in diodes of zinc oxide nanoparticles in a matrix of polystyrene or poly(3-hexylthiophene) [J]. Journal of Applied Physic, 2007, 102(8): 083701.

[4] SHIM J H, JUNG J H, LEE M H, et al. Memory mechanisms of nonvolatile organic bistable devices based on colloidal CuInS2/ZnS core-shell quantum dot-poly (N-vinylcarbazole) nanocomposites [J]. Organic Electronics, 2011, 12(9): 1566-1570.

[5] LIN C W, WANG D Y, TAI Y, et al. Type-II heterojunction organic/inorganic hybrid non-volatile memory based on FeS2 nanocrystals embedded in poly (3-hexylthiophene) [J]. Journal of Physics D: Applied Physics, 2011, 44(29): 292002.

[6] 赵家龙, 张继森, 靳春明, 等.PbS半导体超微粒子的量子尺寸效应和光学性质[J].发光学报, 1993, 14(1): 1-5.

    ZHAO J L, ZHANG J S, JIN C M, et al. Quantum size effects and optical properties of PbS semiconductor ultrafine particles [J]. Chinese Journal of Luminescence, 1993, 14(1): 1-5. (in Chinese)

[7] DUAN T P, LOU W J, WANG X B, et al. Size-controlled synthesis of orderly organized cube-shaped lead sulfide nanocrystals via a solvothermal single-source precursor method [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 310(1-3): 86-93.

[8] ZHENG J P, CHENG B C, WU F Z, et al. Modulation of surface trap induced resistive switching by electrode annealing in individual PbS Micro/Nanowire-based devices for resistance random access memory [J]. ACS Applied Materials & Interfaces, 2014, 6(23): 20812-20818.

[9] KHOZAEE Z, SOSA-VARGAS L, CAMMIDGE A N, et al. Hybrid phthalocyanine/lead sulphidenanocomposite for bistable memory switches [J]. Materials Research Express, 2015, 2(9): 096305.

[10] CARCHANO H, LACOSTE R, SEGUI Y. Bistable electrical switching in polymer thin films [J]. Applied Physics Letters, 1971, 19(10): 414-415.

[11] HENISCH H K, SMITH W R. Switching in organic polymer films [J]. Applied Physics Letters, 1974, 24(12): 589-591.

[12] LI J T, TANG A W, LI X, et al. Negative differential resistance and carrier transport of electrically bistable devices based on poly(N-vinylcarbazole)-silver sulfide composites [J]. Nanoscale Research Letters, 2014, 9(1): 128.

[13] CAO Y P, HU Y F, LI J T, et al. Electrical bistable devices using composites of zinc sulfide nanoparticles and poly-(N-vinylcarbazole) [J]. Chinese Physics B, 2015, 24(3): 037201.

[14] TANG A W, QU S C, HOU Y B, et al. Electrical bistability and negative differential resistance in diodes based on silver nanoparticle-poly(N-vinylcarbazole) composites [J]. Journal of Applied Physics, 2010, 108(9): 094320.

刘娟, 李云白, 侯延冰, 王越, 吕龙峰. 基于PVK/PbS纳米晶有机无机复合薄膜电双稳器件性能研究[J]. 液晶与显示, 2016, 31(7): 643. LIU Juan, LI Yun-bai1, HOU Yan-bing, WANG-Yue, LV Long-feng. Organic/inorganic composite electrical bistable devices based on composite of poly(N-vinylcarbazole) and lead sulfide nanocrystals[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(7): 643.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!