强激光与粒子束, 2014, 26 (12): 129003, 网络出版: 2015-01-08   

初始模型对含噪动态光散射数据正则化反演结果的影响

Influence of initial model on regularized inversion of noisy dynamic light scattering data
作者单位
山东理工大学 电气与电子工程学院, 山东 淄博 255049
摘要
分别采用最小模型矩阵、最平坦模型矩阵、最光滑模型矩阵作为初始化模型,对加入5种不同水平随机噪声的90 nm窄单峰、90 nm宽单峰和250 nm窄单峰、250 nm宽单峰颗粒体系的模拟分布进行了正则化反演,并对反演结果进行比较。结果表明: 当噪声水平为0时,正则化初始模型的选择对反演结果没有明显影响。随着噪声水平的增加,采用三种初始化模型反演得到的峰值误差和粒度分布误差都随之变大,但采用最平坦模型和最光滑模型反演得到的峰值和粒度分布误差明显小于采用最小初始模型的反演误差。当噪声水平大于0.01时,选择最平坦初始模型获得的粒度分布结果优于采用最光滑初始模型和最小初始模型获得的结果,而采用最光滑初始模型反演得到的峰值优于最平坦初始模型和最小初始模型的反演峰值。因此,采用正则化算法处理含噪动态光散射数据时,为得到最优的粒度分布信息,宜采用最平坦初始模型,若需要获取最准确的峰值信息,则应选择最光滑初始模型。
Abstract
Regularization algorithm is a common method to recover the particle size distributions(PSDs)from dynamic light scattering(DLS)data. The initial regularization model has important influence on the inversion results. In this paper, the narrow and wide simulation distributions of 90nm and 250nm were inversed by the smallest, the flattest and the smoothest initial model respectively. The inversion results show that the initial model has almost no influence on the inversion results under the noise level of 0. With the increase of noise level, although the errors of peak and PSD value inversed by the three initial models are all increased, the increases by using flattest model and smoothest model are less than using the smallest model obviously. When the noise level is greater than 0.01, the better particle size distribution results can be obtained by using the flattest model than the smallest and the smoothest models, and more accurate particle peak values can be got by using the smoothest model than the flattest and the smallest models. For obtaining the optimal PSDs inversed by regularization from noisy DLS data, the flattest model is suggested to be chosen, and for getting the optimal peak value, the smoothest model is the best choice.
参考文献

[1] 周祖康. 动态光散射[J]. 化学通报,1986, 10: 34-39.(Zhou Zukang. Dynamic light scattering[J]. Chemistry, 1986, 10: 34-39)

[2] Thomas J C. Photon correlation spectroscopy: technique and instrumentation [C]. SPIE, 1991, 1430: 2-18.

[3] 王雅静,申晋,郑刚,等. 基于多尺度变换的动态光散射粒径反演范围的自适应调整[J]. 强激光与粒子束,2010,22(12):2979-2983.(Wang Yajing, Shen Jin, Zheng Gang, et al. Self-adaptive adjustment of inverse range of dynamic light scattering particle sizing based on multi-scale transform[J]. High Power Laser and Particle Beams, 2010,22(12):2979-2983)

[4] Takahashi K, Kato H, Saito T, et al. Precise measurements of the size of nanoparticles by dynamic light scattering with uncertainty analysis[J]. Part Part Syst Charact, 2008, 25(3): 31-38.

[5] 胡广春,张伟光. 氚钛薄膜靶中氚深度分布的反演[J]. 强激光与粒子束,2013, 25(1):259-262.(Hu Guangchun, Zhang Weiguang. Inversion of depth profile of tritium in tritium-titanium target[J]. High Power Laser and Particle Beams, 2013, 25(1):259-262)

[6] Tikhonov A N, Arsenin V Y. Solutions of ill-posed problems[M]. New York: John Wiley and Sons,1977.

[7] Provencher S W. A constrained regularization method for inverting data represented by linear algebraic or integral equations[J]. Computer physics communications, 1982, 27(3):213-227.

[8] Bakushinskii A B. The problem of the convergence of the iteratively regularized Gauss-Newton method[J]. Comput. Math. Math. Phys. 1992, 32(9):1353-1359.

[9] Hanke M, Neubauer A, Scherzer O. A convergence analysis of the Landweber iteration for nonlinear ill-posed problems[J]. Numer. Math. 1995, 72(1):21-37.

[10] 王宏禹. 随机数字信号处理[M]. 北京: 科学出版社,1988.(Wang Hongyu. Random digital signal processing[M]. Beijing: Science press, 1988)

[11] Engl H W, Hanke M, Neubauer A. Regularization of inverse problems[M]. Dordrecht: Kluwer, 1996.

[12] 肖庭延,于慎根,王彦飞. 反问题的数值解法[M]. 北京: 科学出版社,2003.(Xiao Tingyan, Yu Shengen, Wang Yanfei. The numerical solutions of the inverse problems. Beijing: Science PressHYPERLINK"app:ds:sciencepress", 2003)

[13] Morozov V A. Methods for solving incorrectly posed problems[M]. New York: Springer, 1984.

[14] Hansen P C. Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems[J]. Numerical algorithms, 1994, 6(1):1-35.

[15] Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve[J]. SIAM Review, 1992, 34(4):561-580.

[16] Cullum Jane. The effective choice of the smoothing norm in regularization[J]. Mathematics of computation, 1979, 33:149-170 .

[17] Varah J M. A practical examination of some numerical methods for linear discrete ill-posed problems[J]. SIAM Review, 1979, 21(1):100-111

[18] Shen Jin, Thomas J C, Zhu Xinjun, Wang Yajing. Wavelet denoising experiments in dynamic light scattering[J]. Optics Express, 2011,19(13):12284-12290

[19] Zhu Xinjun, Shen Jin, Thomas J. C. Analysis of noisy dynamic light scattering data using constrained regularization techniques[J]. Applied Optics, 2012.51(31):7537-7548

[20] Schatzel K. Correlation techniques in dynamic light scattering[J]. Appl. Phys. B, 1987, 42(4): 193-213

[21] 唐隆基,李文,邓阳生. 关于解地球物理中病态方程的若干问题[J]. 地球物理学报,1995,38(1):105-114.(Tang Longji, Li Wen, Deng Yangsheng. Some aspects for solving ill-posed equation in geophysics[J]. Acta Geophysica Sinica, 1995, 38(1):105-114)

[22] Hansen P C, O’leary D P. The use of the L-curve in the regularization of discrete ill-posed problems[J]. SIAM Journal on Scientific Computing, 1993, 14(6): 1487-1503.

[23] Milind kandlikar ,Gurumurthy Ramachandran. Inverse methods for analysing aerosol spectrometer measurements: a critical review[J]. Aerosol Sci. 1999, 30(4): 413-437.

[24] Yu A B and Standish N. A Study of particle size distributions[J]. powder technology. 1990, 62(2): 101-118.

肖莹莹, 申晋, 王雅静, 刘伟, 孙贤明. 初始模型对含噪动态光散射数据正则化反演结果的影响[J]. 强激光与粒子束, 2014, 26(12): 129003. Xiao Yingying, Shen Jin, Liu Wei, Wang Yajing, Sun Xianming. Influence of initial model on regularized inversion of noisy dynamic light scattering data[J]. High Power Laser and Particle Beams, 2014, 26(12): 129003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!