发光学报, 2016, 37 (6): 711, 网络出版: 2016-09-12  

电荷耦合器件的γ辐照剂量率效应研究

Dose Rate Effects of γ Irradiation on CCDs
作者单位
1 中国科学院特殊环境功能材料与器件重点实验室, 新疆电子信息材料与器件重点实验室, 中国科学院 新疆理化技术研究所, 新疆 乌鲁木齐830011
2 中国科学院大学, 北京100049
3 重庆光电技术研究所, 重庆400060
摘要
对电荷耦合器件进行了不同剂量率的γ辐照实验, 通过多种参数的测试探讨了剂量率与电荷耦合器件性能退化的关系, 并对损伤的物理机理进行分析。辐照和退火结果表明: 暗信号和暗信号非均匀性是γ辐照的敏感参数, 电荷转移效率和饱和输出电压随剂量累积有缓慢下降的趋势; 暗场像素灰度值整体抬升, 像元之间的差异显著增加; 电荷耦合器件的暗信号增量与剂量率呈负相关性, 器件存在潜在的低剂量率损伤增强效应。分析认为, 剂量率效应是由界面态和氧化物陷阱电荷竞争导致的。通过电子-空穴对复合模型、质子输运模型和界面态形成对机理进行了解释。
Abstract
The experiments of dose rate on charge coupled devices(CCDs) were carried out to investigate the relationship between the dose rate and the electrical parameters of the device, and the degradation mechanism was analyzed. With the accumulation of the dose, the dark signal (DS)and dark non-uniformly signal(DNS) increase significantly, and the both charge transfer efficiency (CTE)and saturation output voltage(SOV) tend to decrease slowly. The whole dark pixel value uplifts and the non-uniform between pixels becomes obviously. The dark signal of the CCD is negatively correlated with the dose rate, and the device presents the potential of the-low-dose-rate-damage enhancement effect. It is considered that the dose rate effect is caused by the competition between the interface states and oxide traps, and the mechanism is explained by the electron-hole pair recombination model and the damage model in the annealing process.
参考文献

[1] BEBEK C, GROOM D, HOLLAND S, et al.. Proton radiation damage in p-channel CCDs fabricated on high-resistivity silicon [J]. IEEE Trans. Nucl. Sci., 2002, 49(3):1221-1225.

[2] CHUGG A M, JONES R, MOUTRIE M J, et al.. Analyses of images of neutron interactions and single particle displacement damage in CCD arrays [J]. IEEE Trans. Nucl. Sci., 2004, 51(6):3579-3584.

[3] SOLTAU H, HOLLA P, KEMMER J, et al.. Performance of the pn-CCD X-ray detector system designed for the XMM satellite mission [J]. Nucl. Instrum. Methods Phys. Res. Sect. A, 1996, 337(2-3):340-345.

[4] PICKEL J C, KALMA A H, HOPKINSON G R, et al.. Radiation effects on photonic imagers—a historical perspective [J]. IEEE Trans. Nucl. Sci., 2003, 50(3):671-688.

[5] HOPKINSON G R. Radiation effects on solid state imaging devices [J]. Radiat. Phys. Chem., 1994, 43(1-2):79-91.

[6] 从忠超,余学峰,崔江维,等. 半导体器件总剂量辐射效应的热力学影响 [J]. 发光学报, 2014, 35(4):465-469.

    CONG Z C, YU X F, CUI J W, et al.. Thermodynamic impact on total dose effect for semiconductor components [J]. Chin. J. Lumin., 2014, 35(4):465-469. (in Chinese)

[7] 李豫东,汪波,郭旗,等. CCD与CMOS图像传感器辐射效应测试系统 [J]. 光学 精密工程, 2013, 21(11): 2778-2784.

    LI Y D, WANG B, GUO Q, et al.. Testing system for radiation effects of CCD and CMOS image sensors [J]. Opt. Precion Eng., 2013, 21(11):2778-2784. (in Chinese)

[8] ENLOW E W, PEASE R L, COMBS W, et al.. Response of advanced bipolar processes to ionizing radiation [J]. IEEE Trans. Nucl. Sci., 1991, 38(6):1342-1351.

[9] FLEETWOOD D M, RIEWE L C, SCHWANK J R, et al.. Radiation effects at low electric fields in thermal, SIMOX, and bipolar-base oxides [J]. IEEE Trans. Nucl. Sci., 1996, 43(6):2537-2546.

[10] FLEETWOOD D M, KOSIER S L, NOWLIN R N, et al.. Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates [J]. IEEE Trans. Nucl. Sci., 1994, 41(6):1871-1883.

[11] JOHNSTON A H, RAX B G, LEE C I. Enhanced damage in linear bipolar integrated circuits at low dose rate [J]. IEEE Trans. Nucl. Sci., 1995, 42(6):1650-1659.

[12] RASHKEEV S N, CIRBA C R, FLEETWOOD D M, et al.. Physical model for enhanced interface-trap formation at low dose rates [J]. IEEE Trans. Nucl. Sci., 2002, 49(6):2650-2655.

[13] HJALMARSON H P, PEASE R L, WITCZAK S C, et al.. Mechanisms for radiation dose-rate sensitivity of bipolar transistors [J]. IEEE Trans. Nucl. Sci., 2003, 50(6):1901-1909.

[14] BOCH J, SAIGN F, SCHRIMPF R D, et al.. Physical model for the low-dose-rate effect in bipolar devices [J]. IEEE Trans. Nucl. Sci., 2003, 53(6):3655-3660.

[15] WITCZAK S C, LACOE R C, OSBORN J V, et al.. Dose-rate sensitivity of modern nMOSFETs [J]. IEEE Trans. Nucl. Sci., 2005, 52(6):2602-2608.

[16] RASHKEEV S N, FLEETWOOD D M, SCHRIMPF R D, et al.. Proton-induced defect generation at the Si-SiO2 interface [J]. IEEE Trans. Nucl. Sci., 2001, 48(6):2086-2092.

[17] WANG Z J, HE B P, YAO Z B, et al.. Dose rate and bias effects on COTS array CCDs induce dark signals increase [J]. IEEE Trans. Nucl. Sci., 2014, 61(3):1376-1380.

[18] HOPKINSON G R, DALE C J, MARSHALL P W. Proton effects in charge-coupled devices [J]. IEEE Trans. Nucl. Sci., 1996, 43(2):614-627.

[19] 汪波,李豫东,郭旗,等. 电荷耦合器件中子辐照诱发的位移效应 [J]. 发光学报, 2016, 37(1):44-49.

    WANG B, LI Y D, GUO Q, et al.. Neutron irradiation induced displacement damage effects on charge coupled device [J]. Chin. J. Lumin., 2016, 37(1):44-49. (in Chinese)

[20] SCHWANK J R, SHANEYFELT M R, FLEETWOOD D M, et al.. Radiation effects in MOS oxides [J]. IEEE Trans. Nucl. Sci., 2008, 55(4):1833-1853.

[21] MA T P, DRESSENDORFER P V. Ionizing Radiation Effects in MOS Devices and Circuits [M]. New York: Wiley, 1989.

[22] 雷仁方,王艳,高建威,等. CCD表面暗电流特性研究 [J]. 电子科技, 2014, 27(5):26-28.

    LEI R F, WANG Y, GAO J W, et al.. Study on surface dark current of CCD [J]. Electron. Sci. Technol., 2014, 27(5):26-28. (in Chinese)

[23] BOCH J, SAIGNE F, SCHRIMPF R D, et al.. Elevated temperature irradiation at high dose rate of commercial linear bipolar ICs [J]. IEEE Trans. Nucl. Sci., 2004, 51(5):2903-2907.

[24] 王祖军,罗通顶,杨少华,等. 电离辐照诱发面阵电荷耦合器暗信号增大试验 [J]. 中国空间科学技术, 2014, 34(4):72-78.

    WANG Z J, LUO T D, YANG S H, et al.. Experiment of ionizing radiation induced array charge coupled devices dark signal increase [J]. Chin. Space Sci. Technol., 2014, 34(4):72-78. (in Chinese)

[25] VANHEUSDEN K, KARNA S P, PUGH R D, et al.. Thermally activated electron capture by mobile protons in SiO2 thin films [J]. Appl. Phys. Lett., 1998, 72(1):28-30.

[26] MA T P, DRESSENDORFER P V. Ionizing Radiation Effects in MOS Devices and Circuits [M]. New York: Wiley, 1989:87-192.

[27] FLEETWOOD D M, SCOFIELD J H. Evidence that similar point defects cause 1/f noise and radiation-induced-hole trapping in metal-oxide-semiconductor transistor [J]. Phys. Rev. Lett., 1990, 64(5):579-582.

[28] LU Z Y, NICKLAW C J, FLEETWOOD D M, et al.. Structure, properties, and dynamics of oxygen vacancies in amorphous SiO2 [J]. Phys. Rev. Lett., 2002, 89(28):285505-1-4.

[29] WARREN W L, SHANEYFELT M R, SCHWANK J R, et al.. Paramagnetic defect centers in BESOI and SIMOX buried oxides [J]. IEEE Trans. Nucl. Sci., 1993, 40(6):1755-1764.

武大猷, 文林, 汪朝敏, 何承发, 郭旗, 李豫东, 曾俊哲, 汪波, 刘元. 电荷耦合器件的γ辐照剂量率效应研究[J]. 发光学报, 2016, 37(6): 711. WU Da-you, WEN Lin, WANG Chao-min, HE Cheng-fa, GUO Qi, LI Yu-dong, ZENG Jun-zhe, WANG Bo, LIU Yuan. Dose Rate Effects of γ Irradiation on CCDs[J]. Chinese Journal of Luminescence, 2016, 37(6): 711.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!