半导体光电, 2020, 41 (4): 517, 网络出版: 2020-08-18  

预电离效应对ArF准分子激光特性的影响分析

Effects of Preionization on Properties of ArF Excimer Laser
苏丹 1,2,3赵江山 1,2,3,*王倩 1,2,3
作者单位
1 中国科学院微电子研究所, 北京 100094
2 北京市准分子激光工程技术研究中心, 北京 100094
3 中国科学院大学, 北京 100049
摘要
利用流体模型对ArF准分子激光气体放电过程进行了数值模拟,通过对比不同初始预电离强度下的气体放电情况,分析了预电离效应对准分子激光系统放电特性的影响,并探究了不同气体参数下的预电离效果。结果表明,初始预电离强度对于极间击穿电压、ArF准分子的形成以及光输出特性均有显著影响。在保证均匀电场且有效放电的情况下,低的初始预电离强度难以“点燃”气体,但可以获得较高的激光输出能量,而提高初始预电离强度能有效降低击穿电压,却不利于气体对能量的吸收转化。此外,预电离效果受工作气压与F2比例的影响,气压的升高或F2浓度的增加,均会降低预电离的有效性。
Abstract
A fluid model is used to investigate the discharge kinetics of ArF excimer laser. By comparing the gas discharge at different initial preionization intensities, the effects of preionization on discharge excited excimer laser system are analyzed. The preionization effect under different gas parameters is also discussed. The results show that the initial preionization intensity has significant effects on the breakdown voltage, the formation of ArF excimer, the optical quality and gain. Under the premise of uniform electric field and effective discharge, it is difficult to reach the gas breakdown threshold with low initial preionization intensity, but higher laser power can be obtained. Increasing the initial preionization intensity can effectively reduce the breakdown voltage, but it’s not conducive to the absorption and conversion of energy. The preionization capability is affected by the gas pressure and fluorine ratio. The increasing of gas pressure or fluorine concentration can reduce the effectiveness of preionization.
参考文献

[1] Dirk B, Pippert K D, Stamm U. History and future prospects of excimer lasers[C]// Proc. Second International Symposium on Laser Precision Microfabrication, 2002, 4426: 456812.

[2] 李雪辰, 董丽芳. 大气压介质阻挡辉光放电研究综述[J]. 自然科学进展, 2006, 16(12): 15211529.

    Li X C, Dong L F. Review of atmospheric dielectric barrier glow discharge[J]. Progress in Natural Science, 2006, 16(12): 15211529.

[3] 詹花茂, 李 明, 李成榕. 介质阻挡放电中的紫外线预电离[J]. 高电压技术, 2005, 31(2): 6263.

    Zhan H M, Li M, Li C R. Ultraviolet preionization in dielectric barrier discharge[J]. High Voltage Engineering, 2005, 31(2): 6263.

[4] 余吟山, 游利兵, 梁 勖, 等. 准分子激光技术发展[J]. 中国激光, 2010, 37(9): 2253.

    Yu Y S, You L B, Liang X, et al. Progress of excimer lasers technology[J]. Chinese J. of Lasers, 2010, 37(9): 2253.

[5] Levatter J I, Lin S C. Necessary conditions for the homogeneous formation of pulsed avalanche discharges at high gas pressures[J]. J. of Appl. Phys., 1980, 51(1): 210222.

[6] Bretagne J, Louvet Y. Theoretical analysis of the Xray initiation of a highpressure argon discharge for laser applications[J]. J. of Appl. Phys., 1987, 61(3): 827832.

[7] Cerna K M, Bessieres D, Paillol J. Positive streamer formation in cathode region of pulsed highpressure discharges for transversely excited atmosphere laser applications[J]. J. of Appl. Phys., 2011, 110(5): 053303.

[8] Xiong Z, Kushner M J. Phototriggering and secondary electron produced ionization in electric discharge ArF* excimer lasers[J]. J. of Appl. Phys., 2011, 110(8): 083304.

[9] Mathew D, Bastiaens H M J, Boller K J, et al. Effect of preionization, fluorine concentration and current density on the discharge uniformity in F2 excimer laser gas mixtures[J]. J. of Appl. Phys., 2007, 102(3): 033305.

[10] 武占成, 张希军, 胡有志. 气体放电[M]. 北京: 国防工业出版社, 2012: 1133.

    Wu Z C, Zhang X J, Hu Y Z. Gas Discharge[M]. Beijing: National Defense Industry Press, 2012: 1133.

[11] Akashi H, Sakai Y, Tagashira T. Modelling of a selfsustained dischargeexcited ArF excimer laser[J]. J. of Phys. D: Appl. Phys., 1994, 27(6): 10971106.

[12] Akashi H, Sakai Y, Tagashira I. Modelling of a selfsustained dischargeexcited ArF excimer laser: the influence of photoionization and photodetachment by laser light on the discharge development[J]. J. of Phys. D: Appl. Phys., 1995, 28(3): 445451.

[13] Xiong Zhongmin, Kushner M J. Surface coronabar discharges for production of preionizing UV light for pulsed highpressure plasmas[J]. J. of Phys. D: Appl. Phys., 2010, 43(50): 505204505213.

[14] 付强新. 低气压辉光放电等离子体模拟与特性研究[D]. 西安: 西安电子科技大学, 2013: 3741.

    Fu Q X. Simulation and research on the characteristic of lowpressure glow discharge plasma[D]. Xian: Xidian University, 2013: 3741.

[15] 付洋洋, 罗海云, 邹晓兵, 等. 棒板电极下缩比气隙辉光放电相似性的仿真研究[J]. 物理学报, 2014, 63(9): 095206.

    Fu Y Y, Luo H Y, Zou X B, et al. Simulation on similarity law of glow discharge in scaledown gaps of rodplane electrode configuration[J]. Chinese J. of Phys., 2014, 63(9): 095206.

[16] 雷 杰, 王绍英, 王 勇, 等. 离子复合对准分子ArF* ,Ar2F*形成过程的影响[J]. 量子电子学, 1987(4): 354358.

    Lei J, Wang S Y, Wang Y, et al. Influence of recombination in the formation processes of ArF* and Ar2F* excimers[J]. Chinese J. of Quantum Electron., 1987(4): 354358.

苏丹, 赵江山, 王倩. 预电离效应对ArF准分子激光特性的影响分析[J]. 半导体光电, 2020, 41(4): 517. SU Dan, ZHAO Jiangshan, WANG Qian. Effects of Preionization on Properties of ArF Excimer Laser[J]. Semiconductor Optoelectronics, 2020, 41(4): 517.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!