红外与毫米波学报, 2018, 37 (2): 168, 网络出版: 2018-05-29  

高功率单高阶模倒置表面浮雕结构垂直腔面发射激光器

High power single-higher-mode VCSEL with inverted surface relief
作者单位
1 长春理工大学 高功率半导体激光国家重点实验室,吉林 长春 130022
2 长春理工大学 科技部国家纳米操纵与制造国际联合研究中心,吉林 长春 130022
3 长春理工大学 空间光电技术研究所,吉林 长春 130022
摘要
提出并研究了一种带有环形出光孔的倒置表面浮雕结构垂直腔面发射激光器.该器件最突出的结构特点在于,支持稳定的单高阶横向模式激射.在输入电流为六倍阈值电流时,输出功率高达9.8 mW,边模抑制比将近30 dB.在外界为360 K高温时,输出功率仍可达4 mW.且其远场表现出的高斯光束发散角较小.
Abstract
An inverted surface relief vertical-cavity surface-emitting laser (ISR-VCSEL) with annular light emitting window has been presented and investigated. The most prominent structural feature of the device is that the stable single-higher-order transverse mode emission is supported. The laser emits output power up to 9.8 mW at about six times threshold current with an SMSR close to 30 dB, and it can still keep the output power of 4 mW even at as high ambient temperature as 360 K. The measured far field power intensity shows a Gaussian-shaped beam profile with low divergence.
参考文献

[1] Huang M C Y, Zhou Y, Changhasnain C J. A surface-emitting laser incorporating a high-index-contrast sub-wavelength grating[J].nature, 2007, 1(2):119-122.

[2] Haglund , Hashemi E, Bengtsson J, et al. Progress and challenges in electrically pumped GaN-based VCSELs[C]// SPIE Photonics Europe. 2016:98920Y.

[3] Haglund E, Westbergh P, Gustavsson, J S, et al. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25~50 Gbit/s[J]. Electronics Letters, 2015, 51(14):1096-1098.

[4] Iga K. Surface-emitting laser-its birth and generation of new optoelectronics field[J]. Selected Topics in Quantum Electronics IEEE Journal of, 2000, 6(6):1201-1215.

[5] Long C M, Mickovic Z, Dwir B, et al. Polarization mode control of long-wavelength VCSELs by intracavity patterning[J]. Optics Express, 2016, 24(9):9715.

[6] Zhou D, Mawst L J. High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 2002, 38(12):1599-1606.

[7] Song D S, Kim S H, Park H G, et al. Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers[J]. Applied Physics Letters, 2002, 80(21):3901-3903.

[8] Unold H J, Mahmoud S W Z, Jager R, et al. Improving single-mode VCSEL performance by introducing a long monolithic cavity[J]. IEEE Photonics Technology Letters, 2000, 12(8):939-941.

[9] Haglund A, Gustavsson J S, Vukusic J, et al. Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief[J]. IEEE Photonics Technology Letters, 2006, 16(2):368-370.

[10] Jiao J, Wang W, Li L, et al. An improved magnetic field detection unit based on length-magnetized Terfenol-D and width-polarized ternary 0.35Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.30PbTiO3[J]. Applied Physics Letters, 2012, 101(23):391.

[11] Kroner A, Rinaldi F, Ostermann J M, et al. High-performance single fundamental mode AlGaAs VCSELs with mode-selective mirror reflectivities[J]. Optics Communications, 2007, 270(2):332-335.

[12] Furukawa A, Sasaki S, Hoshi M, et al. High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure[J]. Applied Physics Letters, 2004, 85(22): 5161-5163.

[13] Fischer A J, Choquette K D, Chow W W, et al. High single-mode power observed from acoupled-resonator vertical-cavity laser diode[J]. Appl. Phys. Lett. 2001, 79(25): 4079-4081.

[14] Shi J W, Chen C C, Wu Y S, et al. High-power and high-speed Zn-diffusion single fundamental-modevertical-cavity surface-emitting lasers at 850-nm wavelength[J]. IEEEPhoton. Technol. Lett. 2008, 20(13): 1121-1123.

[15] Kardosh I, Demaria F, Rinaldi F, et al. High-power single transverse mode vertical-cavity surface-emitting lasers with monolithically integrated curved dielectric mirrors[J]. IEEE Photonics Technology Letters, 2008, 20(24):2084-2086.

[16] Unold H J, Mahmoud S W Z, Jager R, et al. Large-area single-mode VCSELs and the self-aligned surface relief[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 2(2):386-392.

[17] Haglund A, Gustavsson J S, Modh P, et al. Dynamic mode stability analysis of surface relief VCSELs under strong RF modulation[J]. IEEE Photonics Technology Letters, 2005, 17(8):1602-1604.

[18] Soderberg E, Gustavsson J S, Modh P, et al. Suppression of higher order transverse and oxide modes in 1.3-μm InGaAs VCSELs by an inverted surface relief[J]. IEEE Photonics Technology Letters, 2007, 19(5):327-329.

[19] Xu D W, Yoon S F, Ding Y, et al. 1.3-, m In(Ga)As quantum-dot VCSELs fabricated by dielectric-free approach with surface-relief process[J]. IEEE Photonics Technology Letters, 2011, 23(2):91-93.

[20] Jiang C H, Shi J W, Yen J L, et al. Single-mode vertical-cavity-surface-emitting[C]// Quantum Electronics and Laser Science Conference, 2005. QELS '05. IEEE, 2005, 2:1026-1028.

[21] Yen J L. Ring shaped vertical-cavity-surface-emitting-laser (VCSEL) with lower divergence angle performance[J].Lee-Ming Institute Technol Lett.2005, 18(1):61-66.

[22] Jung C, Jager R, Grabherr M, et al. 4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes[J]. ELECTRONICS LETTERS-IEE. 1997, 33(21):1790-1791.

[23] Sale T E. Cavity and reflector design for vertical cavity surface emitting lasers[J]. IEE Proceedings-Optoelectronics. 1995, 142(1):37-43.

[24] Chang-Hasnain C J, Harbison J P, Hasnain G, et al. Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers[J]. IEEE Journal of Quantum Electronics, 1991, 27(6):1402-1409.

[25] Kroner A, Kardosh I, Rinaldi F, et al. Towards Vcsel-based integrated optical traps for biomedical applications[J]. Electronics Letters, 2006, 42(2):93-94.

[26] Chen C C, Liaw S J, Yang Y J. Stable single-mode operation of an 850-nm VCSEL with a higher order mode absorber formed by shallow Zn diffusion[J]. IEEE Photonics Technology Letters, 2001, 13(4):266-268.

[27] Bachmann A, Arafin S, Kashanishirazi K. Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm[J]. New Journal of Physics, 2009, 11(12):125014.

[28] Sanchez D, Cerutti L, Tournié E. Single-mode monolithic GaSb vertical-cavity surface-emitting laser.[J]. Optics Express, 2012, 20(14):15540-6.

[29] Bachmann A, Kashani-Shirazi K, Arafin S, et al. GaSb-Based VCSEL with buried tunnel junction for emission around 2.3μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3):933-940.

[30] Xiang L, Zhang X, Zhang J W, et al. Stable single-mode operation of 894.6 nm VCSEL at high temperatures for Cs atomic sensing[J]. Chinese Physics B, 2017, 26(7):130-133.

[31] Al-Samaneh A, Bou Sanayeh M, Miah M J, et al. Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks[J]. Applied Physics Letters, 2012, 101(17):640-649.

[32] Shi J W, Jiang C H, Chen K M, et al. Single-mode vertical-cavity surface-emitting laser with ring-shaped light-emitting aperture[J]. Applied Physics Letters, 2005, 87(3):221.

[33] QU Hong-Wei, GUO Xia, DONG Li-Min, et al. Study on the temperature characteristics of vertical cavity surface emitting laser[J]. Laser & Infrared(渠红伟, 郭霞, 董立闽,等.垂直腔面发射激光器温度特性的研究.激光与红外), 2005, 35(2):83-86.

[34] Ebeling K J. Integrated optoelectronics : waveguide optics, photonics, semiconductors[M]. Berlin ;New York :Springer-Verlag,c1993.

[35] Young E W, Choquette K D, Chuang S L, et al. Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation[J]. Photonics Technology Letters IEEE, 2001, 13(9):927-929.

王霞, 郝永芹, 晏长岭, 王作斌, 王志伟, 谢检来, 马晓辉, 姜会林. 高功率单高阶模倒置表面浮雕结构垂直腔面发射激光器[J]. 红外与毫米波学报, 2018, 37(2): 168. WANG Xia, HAO Yong-Qin, YAN Chang-Ling, WANG Zuo-Bin, WANG Zhi-Wei, XIE Jian-Lai, MA Xiao-Hui, JIANG Hui-Lin. High power single-higher-mode VCSEL with inverted surface relief[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 168.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!