发光学报, 2017, 38 (5): 630, 网络出版: 2017-09-21   

基于微纳光纤-单壁碳纳米管可饱和吸收体的被动调Q掺镱光纤激光器

Passively Q-switched Yb3+-doped Fiber Laser Based on Microfiber-single Wall Carbon Nanotube Saturable Absorber
作者单位
1 中国科学院国家天文台 长春人造卫星观测站, 吉林 长春 130117
2 吉林大学 集成光电子国家重点联合实验室吉林大学实验区, 吉林 长春 130012
摘要
为实现具有高脉冲能量的调Q脉冲激光输出, 利用微纳光纤-单壁碳纳米管复合的方法制备可饱和吸收体, 并对基于该类型可饱和吸收体器件的被动调Q掺镱光纤激光器进行研究。采用拉伸法将普通单模石英光纤拉制成微纳光纤, 将其与单壁碳纳米管溶液复合, 进一步制备成全光纤集成型器件。将该器件置于环形腔掺镱光纤激光器中, 利用976 nm半导体激光器作为抽运源。当抽运功率为53 mW时, 实现了调Q脉冲激光输出, 激光中心波长为1 039 nm。进一步提升抽运功率至76 mW, 可获得脉冲宽度为3.1 μs、重复频率为25.5 kHz、单脉冲能量为941 nJ的调Q脉冲激光输出。研究表明, 利用微纳光纤制备的可饱和吸收体器件具有较高的损伤阈值, 可用于实现高脉冲能量的激光输出。
Abstract
In order to realize Q-switched fiber laser with high energy pulse, passively Q-switched Yb3+-doped fiber laser based on the microfiber-single wall carbon nanotube (SWCNT) saturable absorber (SA) was reported. The microfiber was fabricated by drawing the single mode silica fiber and then composite with the SWCNT solution, further on preparation of all fiber integrated devices. By inserting the SA in a Yb3+-doped fiber laser ring cavity pumped by a 976 nm laser diode, stable passively Q-switched pulse train occurs at 53 mW incident pump power. Increasing the pump power to 76 mW, 3.1 μs pulses at 1 039 nm with a repetition rate of 25.5 kHz are obtained, which corresponds to single pulse energy of 941 nJ. This result shows that the microfiber based SA can enhance the threshold of material damage and obtain high energy pulse laser.
参考文献

[1] SHI W, FANG Q, ZHU X S, et al.. Fiber lasers and their applications [J]. Appl. Opt., 2014, 53(28):6554-6568.

[2] KELLER U. Recent developments in compact ultrafast lasers [J]. Nature, 2003, 424(6950):831-838.

[3] 黄绣江, 刘永智, 隋展, 等. 超短脉冲光纤激光器新进展及其应用 [J]. 应用光学, 2004, 25(6):16-21.

    HUANG X J, LIU Y Z, SUI Z, et al.. Development and application of ultrafast pulse fiber laser [J]. J. Appl. Opt., 2004, 25(6):16-21. (in Chinese)

[4] 王璞, 刘江. 2.0 μm掺铥超短脉冲光纤激光器研究进展及展望 [J]. 中国激光, 2013, 40(6):0601002-1-12.

    WANG P, LIU J. Progress and prospect on ultrafast Tm-doped fiber lasers at 2 μm wavelength [J]. Chin. J. Lasers, 2013, 40(6):0601002-1-12. (in Chinese)

[5] FERMANN M E, HARTL I. Ultrafast fiber laser technology [J]. IEEE J. Sel. Top. Quant. Electron., 2009, 15(1):191-206.

[6] LI X L, XU J L, WU Y Z, et al.. Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser [J]. Opt. Express, 2011, 19(10):9950-9955.

[7] LIU H H, CHOW K K, YAMASHITA S, et al.. Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation [J]. Opt. Laser Technol., 2013, 45:713-716.

[8] 甘雨, 向望华, 周晓芳, 等. 被动调Q锁模掺镱光纤激光器 [J]. 中国激光, 2006, 33(8):1021-1024.

    GAN Y, XIANG W H, ZHOU X F, et al.. Passive Q-switching and modelocking Yb3+-doped fiber laser [J]. Chin. J. Lasers, 2006, 33(8):1021-1024. (in Chinese)

[9] SOUSA J M, OKHOTNIKOV O G. Multiple wavelength Q-switched fiber laser [J]. IEEE Photon. Technol. Lett., 1999, 11(9):1117-1119.

[10] SET S Y, YAGUCHI H, TANAKA Y, et al.. Laser mode locking using a saturable absorber incorporating carbon nanotubes [J]. J. Lightwave Technol., 2004, 22(1):51-56.

[11] TAUSENEV A V, OBRAZTAOVA E D, LOBACH A S, et al.. 177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes [J]. Appl. Phys. Lett., 2008, 92(17):171113-1-3.

[12] SCARDACI V, ROZHIN A G, TAN P H, et al.. Carbon nanotubes for ultrafast photonics [J]. Phys. Stat. Sol. (b), 2007, 244(11):4303-4307.

[13] KELLEHER E J R, TRAVERS J C, SUN Z P, et al.. Nanosecond-pulse fiber lasers mode-locked with nanotubes [J]. Appl. Phys. Lett., 2009, 95(11):111108-1-3.

[14] QIN G S, SUZUKI T, OHISHI Y. Widely tunable passively mode-locked fiber laser with carbon nanotube films [J]. Opt. Rev., 2010, 17(3):97-99.

[15] ZHOU D P, WEI L, DONG B, et al.. Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber [J]. IEEE Photon. Technol. Lett., 2010, 22(1):9-11.

[16] 朱攀, 桑梅, 王晓龙, 等. 基于单壁碳纳米管可饱和吸收体的被动锁模光纤激光器研究 [J]. 光电子·激光, 2012, 23(9):1686-1690.

    ZHU P, SANG M, WANG X L, et al.. A passive mode-locking pulse fiber laser based on single-walled carbon nanotube saturable absorber [J]. J. Optoelectron. Laser, 2012, 23(9):1686-1690. (in Chinese)

[17] 于永芹, 郑家容, 杜晨林, 等. 碳纳米管被动锁模光纤激光器的研究进展[J]. 激光与红外, 2011, 41(9):953-960.

    YU Y Q, ZHENG J R, DU C L, et al.. Research and progress of carbon nanotubes passively mode-locked fiber laser [J]. Laser Infrared, 2011, 41(9):953-960. (in Chinese)

[18] 董信征, 于振华, 田金荣, 等. 147 fs碳纳米管倏逝场锁模全光纤掺铒光纤激光器 [J]. 物理学报, 2014, 63(3):034202-1-5.

    DONG X Z, YU Z H, TIAN J R, et al.. A 147 fs mode-locked erbium-doped fiber laser with a carbon nanotubes saturable absorber in evanescent field [J]. Acta Phys. Sinica, 2014, 63(3):034202-1-5. (in Chinese)

[19] 张成, 罗正钱, 王金章, 等. 熔锥光纤倏逝场作用石墨烯双波长锁模掺镱光纤激光器 [J]. 中国激光, 2012, 39(6):0602006-1-5.

    ZHANG C, LUO Z Q, WANG J Z, et al.. Dual-wavelength mode-locked Yb-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field [J]. Chin. J. Lasers, 2012, 39(6):0602006-1-5. (in Chinese)

[20] AL-MASOODI A H H, ISMAIL M F, AHMAD F, et al.. Q-switched Yb-doped fiber laser operating at 1 073 nm using a carbon nanotubes saturable absorber [J]. Microwave Opt. Technol. Lett., 2014, 56(8):1770-1773.

[21] DONG B, LIAW C Y, HAO J Z, et al.. Nanotube Q-switched low-threshold linear cavity tunable erbium-doped fiber laser [J]. Appl. Opt., 2010, 49(31):5989-5992.

[22] LIU J, WU S D, YANG Q H, et al.. Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser [J]. Opt. Lett., 2011, 36(20):4008-4010.

[23] KANG Z, GUO X Y, JIA Z X, et al.. Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser [J]. Opt. Mater. Express, 2013, 3(11):1986-1991.

康喆, 刘明奕, 刘承志, 李振伟, 马磊, 许阳, 秦伟平, 秦冠仕. 基于微纳光纤-单壁碳纳米管可饱和吸收体的被动调Q掺镱光纤激光器[J]. 发光学报, 2017, 38(5): 630. KANG Zhe, LIU Ming-yi, LIU Cheng-zhi, LI Zhen-wei, MA Lei, XU Yang, QIN Wei-ping, QIN Guan-shi. Passively Q-switched Yb3+-doped Fiber Laser Based on Microfiber-single Wall Carbon Nanotube Saturable Absorber[J]. Chinese Journal of Luminescence, 2017, 38(5): 630.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!