激光与光电子学进展, 2016, 53 (12): 121201, 网络出版: 2016-12-14  

基于遗传算法的光栅信号辨识与偏差补偿研究

Identification and Deviation Compensation Research for Grating Signals Based on Genetic Algorithm
作者单位
1 军械工程学院导弹工程系, 河北 石家庄 050003
2 军械技术研究所评估中心, 河北 石家庄 050003
3 北京航天计量测试技术研究所光电仪器研究室, 北京 100076
摘要
为减小圆光栅测量过程中叠栅条纹信号的细分误差, 提出了一种对叠栅条纹采样信号进行参数辨识与偏差补偿的方法。该方法运用遗传算法参数辨识理论, 不受信号模型参数初值选取影响, 寻优特性和适用性良好, 使复现的信号模型较好地拟合原始采样信号。信号采样实验中控制光栅匀速转动, 采样两个栅距内的周期信号, 其次对采样得到的离散数据进行频谱分析, 建立光栅信号的数学模型, 进而通过遗传算法对引起细分误差的信号参数进行识别并对细分误差进行数值补偿。实验结果表明, 遗传算法对构建的信号模型参数辨识准确; 对比补偿前后李萨如图形, 验证了该方法对叠栅条纹信号正弦性误差具有良好的补偿效果; 检测单个栅距内的细分误差, 补偿前后误差值由10.65″减小到3.31″。该方法适用于光栅编码器等位移测量系统, 保证测量精度和可靠性。
Abstract
In order to eliminate the subdivision error of moiré fringe signals in the circular grating measurement process, a parameter identification and deviation compensation method for grating sampled signal is proposed. The method is based on the parameter identification theory of the genetic algorithm and cannot be affected by initial signal model parameters with characteristics of optimization and applicability. The regenerated signal model can fit the original signal well. The periodic signals between two grating pitches are sampled with grating rotating at a constant speed in sampling experiments. From the sampled discrete data, the frequency spectra are obtained and analyzed for establishing the mathematical model of grating signals. The parameters which cause the subdivision error are identified by using the genetic algorithm to compensate the subdivision error. The experimental results show that the parameters of signal model constructed by genetic algorithm are identified accurately. The sine deviation of moiré fringe signals is compensated by comparing the Lissajous figures with and without compensation. The subdivision error detected in one grating pitch decreases from 10.65″ to 3.31″. This method can actually be used in grating encoder system and other displacement measuring systems, which ensures the measurement accuracy and reliability.
参考文献

[1] 白普俊, 薛 娜, 刘松涛, 等. 基于激光追踪仪的精密转台角度标定方法[J]. 华南理工大学学报, 2016, 44(1): 100-107.

    Bai Pujun, Xue Na, Liu Songtao, et al. Angular calibration method of precision rotating platform based on laser tracker[J]. Journal of South China University of Technology, 2016, 44(1): 100-107.

[2] 付 敏, 朱 革, 郑方燕, 等. 基于时序推延的线阵CCD动态位移测量方法研究[J]. 光学学报, 2016, 36(2): 0212003.

    Fu Min, Zhu Ge, Zheng Fangyan, et al. Dynamic displacement measurement method research of linear CCD based on timing delay[J]. Acta Optica Sinica, 2016, 36(2): 0212003.

[3] 常 丽, 孙明杰, 许 会, 等. 提高光栅莫尔条纹CCD采集质量的噪声处理[J]. 仪表技术与传感器, 2013(1): 82-85.

    Chang Li, Sun Mingjie, Xu Hui, et al. Noise processing to improve CCD acquisition quality of grating moiré fringe[J]. Instrument Technique and Sensor, 2013(1): 82-85.

[4] 母一宁, 李 平, 于林韬, 等. 应用于增量式光电编码器的相关自适应滤波方法[J]. 光子学报, 2011, 40(10): 1452-1458.

    Mu Yining, Li Ping, Yu Lintao, et al. Relative self-adaptive filtering method applied to incremental optoelectric encoder[J]. Acta Photonica Sinica, 2011, 40(10): 1452-1458.

[5] Lu X D, Trumper D L. Self-calibration of on-axis rotary encoders[J]. CIRP Annals - Manufacturing Technology, 2007, 56(1): 499-504.

[6] 王显军. 光电轴角编码器细分信号误差及精度分析[J]. 光学 精密工程, 2012, 20(2): 379-386.

    Wang Xianjun. Errors and precision analysis of subdivision signals for photoelectric angle encoders[J]. Optics and Precision Engineering, 2012, 20(2): 379-386.

[7] 左 洋, 龙科慧, 刘金国, 等. 非均匀采样莫尔条纹信号的分析与处理[J]. 光学 精密工程, 2015, 23(4): 1146-1152.

    Zuo Yang, Long Kehui, Liu Jinguo, et al. Analysis and processing of moiré fringe signals based on non-uniform sampling[J]. Optics and Precision Engineering, 2015, 23(4): 1146-1152.

[8] 左 洋, 龙科慧, 刘 兵, 等. 高精度光电编码器莫尔条纹信号质量分析方法[J]. 红外与激光工程, 2015, 44(1): 260-265.

    Zuo Yang, Long Kehui, Liu Bing, et al. Method of analysis based on quality of moiré fringe signals for high precision optical encoder[J]. Infrared and Laser Engineering, 2015, 44(1): 260-265.

[9] 乔 栋, 续志军, 吴宏圣, 等. 绝对式光栅尺细分误差补偿方法[J]. 光学学报, 2015, 35(1): 0112008.

    Qiao Dong, Xu Zhijun, Wu Hongsheng, et al. A method for compensating interpolation error of absolute linear encoder[J]. Acta Optica Sinica, 2015, 35(1): 0112008.

[10] 高 旭, 万秋华, 李金环, 等. 光电轴角编码器莫尔条纹误差信号补偿[J]. 红外与激光工程, 2015, 44(2): 647-653.

    Gao Xu, Wan Qiuhua, Li Jinhuan, et al. Photoelectric shaft encoder error of moiré fringe signal compensation[J]. Infrared and Laser Engineering, 2015, 44(2): 647-653.

[11] 王亚洲, 万秋华, 杜颖财, 等. 光电编码器单莫尔条纹测速方法[J]. 中国光学, 2015, 8(6): 1044-1050.

    Wang Yazhou, Wan Qiuhua, Du Yingcai, et al. Velocity measurement method based on signal moiré fringe[J]. Chinese Optics, 2015, 8(6): 1044-1050.

[12] 刘 杨, 吕恒毅, 王 岩, 等. 光通信粗瞄系统莫尔条纹信号正弦性补偿方法[J]. 仪器仪表学报, 2012, 33(8): 1735-1740.

    Liu Yang, Lü Hengyi, Wang Yan, et al. Compensation method moiré fringe sinusoidal deviation in satellite optical communication coarse pointing system[J]. Chinese Journal of Scientific Instrument, 2012, 33(8): 1735-1740.

[13] 冯英翘, 万秋华. 小型光电编码器细分误差校正方法[J]. 仪器仪表学报, 2013, 34(6): 1374-1379.

    Feng Yingqiao, Wan Qiuhua. Interpolation error calibration method of small photoelectric encoders[J]. Chinese Journal of Scientific Instrument, 2013, 34(6): 1374-1379.

[14] 冯英翘, 万秋华, 孙 莹, 等. 近似三角波莫尔条纹光电信号的细分误差修正[J]. 光学学报, 2013, 33(8): 0812001.

    Feng Yingqiao, Wan Qiuhua, Sun Ying, et al. Interpolation error correction of moiré fringe photoelectric signals in the approximate form of triangle wave[J]. Acta Optica Sinica, 2013, 33(8): 0812001.

[15] 高 旭, 万秋华, 卢新然, 等. 莫尔条纹光电信号自动补偿系统[J]. 红外与激光工程, 2016, 45(2): 0217002.

    Gao Xu, Wan Qiuhua, Lu Xinran, et al. Automatic compensation system for moiré fringe photoelectric signal[J]. Infrared and Laser Engineering, 2016, 45(2): 0217002.

[16] 高 旭, 李俊锋, 张淑梅, 等. 莫尔条纹光电信号细分误差的实时补偿[J]. 红外与激光工程, 2013, 42(11): 3013-3018.

    Gao Xu, Li Junfeng, Zhang Shumei, et al. Real-time compensation of subdivision error for moiré fringe photoelectric signal[J]. Infrared and Laser Engineering, 2013, 42(11): 3013-3018.

[17] 高 旭, 万秋华, 卢新然, 等. 光栅条纹光电信号正弦性偏差的自动补偿[J]. 光学学报, 2013, 33(7): 0712001.

    Gao Xu, Wan Qiuhua, Lu Xinran, et al. Automatic compensation of sine deviation for grating fringe photoelectric signal[J]. Acta Optica Sinica, 2013, 33(7): 0712001.

[18] 袁伟杰, 刘贵杰, 朱绍锋. 基于遗传算法的自治水下机器人水动力参数辨识方法[J]. 机械工程学报, 2010, 46(11): 96-100.

    Yuan Weijie, Liu Guijie, Zhu Shaofeng. Identification method of hydrodynamic parameters of autonomous underwater vehicle based on genetic algorithm[J]. Journal of Mechanical Engineering, 2010, 46(11): 96-100.

[19] 刘永强, 杨绍普, 廖英英, 等. 基于遗传算法的磁流变阻尼器Bouc-Wen模型参数辨识[J]. 振动与冲击, 2011, 30(7): 261-265.

    Liu Yongqiang, Yang Shaopu, Liao Yingying, et al. Parameter identification of Bouc-Wen model for MR damper based on genetic algorithm[J]. Journal of Vibration and Shock, 2011, 30(7): 261-265.

杨华晖, 冯伟利, 刘福. 基于遗传算法的光栅信号辨识与偏差补偿研究[J]. 激光与光电子学进展, 2016, 53(12): 121201. Yang Huahui, Feng Weili, Liu Fu. Identification and Deviation Compensation Research for Grating Signals Based on Genetic Algorithm[J]. Laser & Optoelectronics Progress, 2016, 53(12): 121201.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!