发光学报, 2018, 39 (4): 547, 网络出版: 2018-05-07   

三种电极的大气压氩等离子体射流光学特性

Optical Property of The Atmospheric Pressure Argon Plasma Jet Generated by Three Types of Electrodes
作者单位
华北电力大学 数理学院, 河北 保定071003
摘要
采用铜片-单匝线圈电极、螺旋缠绕电极和双铜片电极 3种结构的放电装置,以氩气作为工作气体,在正弦波激励下获得了大气压等离子体射流。利用电学方法测量了放电电流以及电荷量,并对放电脉冲和放电功率进行了研究;利用发射光谱法对射流的等离子体参量进行了空间分辨测量,并根据ArⅠ 763.5 nm和Ar Ⅰ 772.4 nm的光强计算了电子激发温度。结果发现:在外加电压的正负半周期内,电流脉冲的个数和幅值呈现非对称的变化趋势;随着外加电压的增加,3种结构电极的放电功率从1.7 W逐渐增加到6.0 W;在相同的外加电压情况下,电极面积越小,等离子体射流的长度越长;3种等离子体射流的电子激发温度在1 348.5~3 212.1 K之间,并且随着气体流量的增加,各位置的电子激发温度总体上呈下降趋势,而等离子体的电子密度呈上升趋势。实验结果表明:外加电压对放电功率有一定影响;射流长度与电极面积有关;气体流量对电子激发温度和电子密度的空间分布起重要作用。
Abstract
The atmospheric argon plasma jet generated by three kinds of electrode configurations was obtained, and the discharge characteristics of the plasma jet were investigated by electrical and optical methods. First, the discharge current and quantity of electric charge were measured by electrical method simultaneously. Meanwhile, the discharge pulse and average discharge power were investigated. The plasma parameters of the plasma jet were studied by spatial resolved optical emission spectroscopy. In addition, the excited electron temperature was estimated by spectral intensity of ArⅠ 763.5 nm and ArⅠ 772.4 nm. It is found that the discharge current pulses are asymmetric at different discharge phases. With the increase of the applied voltage, the discharge powers of the three electrodes are increased from 1.7 W to 6.0 W. At the same applied voltage, the smaller the area of the electrode is, the longer the length of the plasma jet becomes. Besides the above results, we also found that the excited electron temperature decreases from 3 212.1 K to 1 348.5 K with the increase of the gas flow rate, while the electron density of the plasma jet decreases with the gas flow rate. The experimental results show that the applied voltage has some influence on the discharge power and the length of jet is related to the electrode area. The gas flow rate plays an important role in the excited electron temperature and the spatial distribution of electron density.
参考文献

[1] KONG M G, KROESEN G, MORFILL G E, et al.. Plasma medicine: an introductory review [J]. New J. Phys., 2009, 11(11):1-35.

[2] PARK G Y, PARK S J, CHOI M Y, et al.. Atmospheric-pressure plasma sources for biomedical applications [J]. Plasma Sources Sci. Technol., 2012, 21(4):043001.

[3] LAROUSSI M, LU X. Room-temperature atmospheric pressure plasma plume for biomedical applications [J]. Appl. Phys. Lett., 2005, 87(11):113902.

[4] 刘文正, 严伟, 郝宇翀. 大气压射流等离子体放电特性及其灭菌效果 [J]. 强激光与粒子束, 2010, 22(12):002984-2988.

    LIU W Z, YAN W, HAO Y C. Discharge characteristics of plasma jet at atmospheric pressure and its sterilization efficacy [J]. High Power Laser and Particle Beams, 2010, 22(12):002984-2988. (in Chinese)

[5] GHERARDI N, MARTIN S, MASSINES F. A new approach to SiO2 deposit using a N2-SiH4-N2O glow dielectric barrier-controlled discharge at atmospheric pressure [J]. J. Phys. D: Appl. Phys., 2000, 33(19):L104.

[6] MARIOTTI D, SANKARAN R M. Microplasmas for nanomaterials synthesis [J]. J. Phys. D: Appl. Phys., 2010, 43(43):241-323001.

[7] REUTER S, WINTER J, SCHMIDT-BLEKER A, et al.. Controlling the ambient air affected reactive species composition in the effluent of an argon plasma jet [J]. IEEE Trans. Plasma Sci., 2012, 40(11):2788-2794.

[8] YONG C H, HAN S U. Air plasma jet with hollow electrodes at atmospheric pressure [J]. Phys. Plasmas, 2007, 14(5):013903.

[9] BRUGGEMAN P, LEYS C. Non-thermal plasmas in and in contact with liquids [J]. J. Phys. D: Appl. Phys., 2009, 42(5):053001.

[10] SANDS B L, GANGULY B N, TACHIBANA K. A streamer-like atmospheric pressure plasma jet (postprint) [J]. Appl. Phys. Lett., 2008, 92(15):151503-1-3.

[11] 牛铮, 邵涛, 章程, 等. 空气中纳秒脉冲均匀DBD增加聚合物的表面亲水性 [J]. 高电压技术, 2011, 37(6):1536-1541.

    NIU Z, SH H, ZHANG C, et al.. Hydrophilic improvement of polymers treated homogeneous nanosecond pulse dielectric barrier discharge in atmospheric air [J]. High Volt. Eng., 2011, 37(6):1536-1541. (in Chinese)

[12] MERICAMBOURDET N, LAROUSSI M, BEGUM A, et al.. Experimental investigations of plasma bullets [J]. J. Phys. D: Appl. Phys., 2009, 42(5):055207.

[13] 鲜于斌, 卢新培. 离子体射流的推进机理 [J]. 高电压技术, 2012, 38(7):136-145.

    XIAN Y B, LU X P. Propagation of atmospheric pressure cold plasma jet [J]. High Volt. Eng., 2012, 38(7):136-145. (in Chinese)

[14] ZHANG C, SHAO T, WANG R, et al.. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium [J]. Phys. Plasmas, 2014, 21(10):123.

[15] HAO Z Y, JI S C, LIU H, et al.. Effect of the grounded electrode on cold ar atmospheric pressure plasma jet generated with a simple DBD configuration [J]. IEEE Trans. Plasma Sci., 2014, 42(3):824-832.

[16] 张冠军, 詹江杨, 邵先军, 等. 大气压氩气等离子体射流长度的影响因素 [J]. 高电压技术, 2011, 37(6):1432-1438.

    ZHANG G J, ZHAN J Y, SHAO X J, et al.. Influence factor analysis jet length atmospheric pressure argon plasma jets [J]. High Volt. Eng., 2011, 37(6):1432-1438. (in Chinese)

[17] 李雪辰, 张盼盼, 李亚茹, 等. 三种波形激励的大气压等离子体射流的比较研究 [J]. 中国科学:物理学 力学 天文学, 2016, 46(8):085211.

    LI X C, ZHANG P P, LI Y R, et al.. Comparative investigation on the atmospheric pressure plasma jet excited by three types of waveforms [J]. Sci. China Phys., Mechan. Astronom., 2016, 46(8):085211. (in Chinese)

[18] 侯世英, 罗书豪, 刘坤, 等. 双环电极大气压氦气等离子体射流的特性及其影响因素 [J]. 高电压技术, 2013, 39(7):1569-1576.

    HOU S Y, LUO S H, LIU K, et al.. Characteristics and their influencing factors of double wrapped electrode induced atmospheric pressure helium plasma jet [J]. High Volt. Eng., 2013, 39(7):1569-1576. (in Chinese)

[19] 吴蓉, 李燕, 朱顺官, 等. 等离子体电子温度的发射光谱法诊断 [J]. 光谱学与光谱分析, 2008, 28(4):731-735.

    WU R, LI Y, ZHU S G, et al.. Emission spectroscopy diagnostics of plasma electron temperature [J]. Spectrosc. Spect. Anal., 2008, 28(4):731-735. (in Chinese)

[20] LI X C, DI C, JIA P, et al.. Characteristics of a direct current-driven plasma jet operated in open air [J]. Appl. Phys. Lett., 2013, 103(14):034005.

[21] LI X C, DI C, JIA P, et al.. Characteristics of an atmospheric-pressure argon plasma jet excited by a DC voltage [J]. Plasma Sources Sci. Technol., 2013, 22(4):045007.

[22] DONG L, RAN J, MAO Z. Direct measurement of electron density in microdischarge at atmospheric pressure by Stark broadening [J]. Appl. Phys. Lett., 2005, 86(16):1400.

[23] DONG L, QI Y, ZHAO Z, et al.. Electron density of an individual microdischarge channel in patterns in a dielectric barrier discharge at atmospheric pressure [J].Plasma Sources Sci. Technol., 2008, 17(1):015015.

[24] 陆同兴, 赵献章. 用发射光谱测量激光等离子体的电子温度与电子密度 [J]. 原子与分子物理学报, 1994, 11(2):120-128.

    LU T X, ZHAO X Z. The determination of the electron temperature and electron density of laser plasma from the emission spectra [J]. J. Atom. Mol. Phys., 1994, 11(2):120-128. (in Chinese)

[25] LI X C, LI J, CHU J, et al.. A linear-field plasma jet for generating a brush-shaped laminar plume at atmospheric pressure [J]. Phys. Plasmas, 2016, 23(6):1-84.

[26] LI X C, ZHANG P P, JIA P Y, et al.. Dynamics of atmospheric pressure plasma plumes in the downstream and upstream regions [J]. Plasma Proc. Polym., 2016, 13(4):480-487.

唐蕾, 王永杰, 袁春琪, 尹增谦. 三种电极的大气压氩等离子体射流光学特性[J]. 发光学报, 2018, 39(4): 547. TANG Lei, WANG Yong-jie, YUAN Chun-qi, YIN Zeng-qian. Optical Property of The Atmospheric Pressure Argon Plasma Jet Generated by Three Types of Electrodes[J]. Chinese Journal of Luminescence, 2018, 39(4): 547.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!