激光生物学报, 2010, 19 (1): 61, 网络出版: 2015-10-08  

黄牛(Bos taurus)基因组P450基因家族的分析

A Genome-wide Analysis of P450 Gene Family in Cow (Bos taurus)
作者单位
1 安徽农业大学动物科技学院, 安徽 合肥 230036
2 安徽农业大学生命科学学院, 安徽 合肥 230036
摘要
利用黄牛基因组cDNA和氨基酸数据库对P450基因进行搜索和分析, 结果显示: 在黄牛基因组中发现64个P450基因, 分别属于18个P450家族和38个亚家族。以氨基酸序列相似度大于60 %为标准对黄牛P450基因进行分组, 32个为孤儿基因, 其余32个可归入9个组, 其中7个组适合于正选择和基因转换分析。结果表明: 有3个组显著受到正选择压力作用, 其中的2个组有正选择概率大于95 %的氨基酸位点, 分别位于底物识别位点SRS1和SRS2; 有5个组显示显著的基因转换事件; 既显著受到正选择压力作用, 又参与基因转换的基因共4个。可见, 发生基因转换的基因与受到显著正选择的基因有一定的相关性。此外, 鉴定出20个不同的基序, 其中有6条基序在90 %以上的基因中出现。
Abstract
A genome-wide analysis of P450 genes were performed in cow genome based on their cDNA and amino acid data. Sixty-four P450 genes, assigned into 18 gene families and 38 subfamilies, were identified. All P450 genes were partitioned into 9 groups and 32 orphan genes by a criterion that the genes belong to a group when their amino acid identity were more than 60 %. Positive selection and gene conversion were analyzed in other 7 groups. The results showed that positive selections were detected in 3 groups. The positively selected sites, locating in SRS (substrate recognition sites) 1 and SRS 2, were detected in 2 groups with a more than 95 % probability. And gene conversions were detected in 5 groups. Interestingly, both positive selection and gene conversion events were identified obviously in 4 genes. The certain correlation was revealed between positive selection and gene conversion. Moreover, twenty motifs were identified, thereinto, 6 motifs existed in over 90 % of P450 genes.
参考文献

[1] DODDAPANENI H, CHAKRABORTY R, YADAV J S. Genome-wide Structural and Evolutionary Analysis of the P450 Monooxygenase Genes (P450ome) in the White Rot Fungus Phanerochaete chrysosporium: Evidence for Gene Duplications and Extensive Gene Clustering[J]. BMC Genomics, 2005, 6: 92-116.

[2] NELSON D R, KOYMANS L, KAMATAKI T, et al. P450 Superfamily: Update on New Sequences, Gene Mapping, Accession Numbers and Nomenclature[J]. Pharmacogenetics, 1996, 6: 1-41.

[3] NELSON D R, ZELDIN D C, HOFFMAN S M G, et al. Comparison of Cytochrome P450 (CYP) Genes from the Mouse and Human Genomes, Including Nomenclature Recommendations for Genes, Pseudogenes, and Alternative-Splice Variants[J]. Pharmacogenetics, 2004, 14(1): 1-18.

[4] 李斌, 夏庆友,鲁成, 等. 家蚕细胞色素P450的基因组学分析[J]. 中国科学, 2004, 34(6): 517-521.

    Li Bin, Xia Qing-you, Lu Cheng, et al. Analysis of Cytochrome P450 Genes in Silkworm Genome (Bombyx mori)[J]. Science in China Series C. 2004, 34(6): 517-521.

[5] 朱立勤, 娄建石. 细胞色素P450与药物代谢的研究现状[J]. 中国临床药理学与治疗学, 2004, 9(10): 1 081-1 086.

    Zhu Li-qin, Luo Jian-shi. Resent Studies on Cytochrome P450 and Drug Metabolism[J]. Chin J Clin Pharmaeol Ther, 2004, 9(10): 1 081-1 086.

[6] ALTSCHUL S F, MADDEN T L, SCHAFFER A A, et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs[J]. Nucleic Acids Res, 1997, 25(17): 3 389-3 402.

[7] KALSOTRA A, STROBEL H W. Cytochrome P450 4F Subfamily: at the Crossroads of Eicosanoid and Drug Metabolism[J]. Pharmacology and Therapeutics, 2006, 112(3): 589-611.

[8] YANG Z, NIELSEN R, GOLDMAN N, et al. Codon-substitution Models for Heterogeneous Selection Pressure at Amino Acid Sites[J]. Genetics, 2000, 155: 431-449.

[9] INGELMAN-SUNDBERG M. Implications of Polymorphic Cytochrome P450-dependent Drug Metabolism for Drug Development[J]. Drug Metabolism and Disposition, 2001, 29(4): 570-573.

[10] ZANGER U M, TURPEINEN M, KLEIN K. Functional Pharmacogenetics/Genomics of Human Cytochromes P450 Involved in Drug Biotransformation[J]. Analytical and Bioanalytical Chemistry, 2008, 392(6): 1 093-1 108.

[11] REWITZA K F, O’CONNORB M B, GILBERTC L I. Molecular Evolution of the Insect Halloween Family of Cytochrome P450s: Phylogeny, Gene Organization and Functional Conservation[J]. Insect Biochemistry and Molecular Biology, 2007, 37(8): 741-753.

[12] MCARTHUR A G, HEGELUND T, COX R L, et al. Phylogenetic Analysis of the Cytochrome P450 3 (CYP3) Gene Family[J]. J Mol Evol, 2003, 57(2): 200-211.

[13] HAMMOND-KOSACK K E, JONES J D G. Plant Disease Resistance Genes[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 575-607.

[14] DANGL J L, JONES J D G. Plant Pathogens and Integrated Defense Responses to Infection[J]. Nature, 2001, 411(6839): 826-833.

[15] 季军,杨四海,田大成.水稻基因组中抗病基因正选择方式及基因转换的研究[J]. 中国农业科学, 2007, 40(9): 1 856-1 863.

    Ji Jun, Yang Si-hai, Tian Da-cheng. Patterns of Positive Selection and Gene Conversion in the Complete Disease Resistance Genes of Rice[J]. Scientia Agricultura Sinica, 2007, 40(9): 1 856-1 863.

[16] DA FONSECA R, ANTUNES A, MELO M, et al. Structural Divergence and Adaptive Evolution in Mammalian Cytochromes P450 2C[J]. Gene, 2007, 387(1-2): 58-66.

[17] REWITZ K F, RYBCZYNSKI R, WARREN J T, et al. Developmental Expression of Manduca shade, the P450 Mediating the Final Step in Molting Hormone Synthesis[J]. Mol Cell Endocrinol, 2006, 247(1-2): 166-174.

[18] DENG J, CARBONE I, DEAN R A. The Evolutionary History of Cytochrome P450 Genes in Four Filamentous Ascomycetes[J]. BMC Evolutionary Biology, 2007, 7: 30-52.

[19] CHEN S, ZHOU D. Functional Domains of Aromatase Cytochrome P450 Inferred from Comparative Analyses of Amino Acid Sequences and Substantiated by Site-Directed Mutagenesis Experiment[J]. J Bio. Chem, 1992, 267: 22 587-22 594.

[20] RUPASINGHE S, SCHULER M, KAGAWA N, et al. The Cytochrome P450 Gene Family CYP157 Does Not Contain EXXR in the K-Helix Reducing the Absolute Conserved P450 Residues to a Single Cysteine[J]. FEBS Letters, 2006, 580(27): 6 338-6 342.

[21] FEYEREISEN R. Insect P450 Enzymes[J]. Ann Rev Entomol, 1999, 44: 507-533.

陈丽娟, 程茂基, 张云华. 黄牛(Bos taurus)基因组P450基因家族的分析[J]. 激光生物学报, 2010, 19(1): 61. CHEN Li-juan, CHENG Mao-ji, ZHANG Yun-hua. A Genome-wide Analysis of P450 Gene Family in Cow (Bos taurus)[J]. Acta Laser Biology Sinica, 2010, 19(1): 61.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!