红外与激光工程, 2016, 45 (12): 1217009, 网络出版: 2017-01-12  

Mars-LiDAR系统误差分析及安置角误差飞行检校

Error analysis of Mars-LiDAR system and calibration of installation angle error
作者单位
1 信息工程大学 地理空间信息学院, 河南 郑州 450052
2 地理信息工程国家重点实验室, 陕西 西安 710054
3 西安测绘研究所, 陕西 西安 710054
4 中国科学院光电研究院, 北京 100094
摘要
机载激光雷达系统是集激光扫描仪、全球定位系统和惯性导航系统等于一体的多传感器集成系统。机载激光雷达的检校和标定是保证激光点云定位精度的关键环节,其中扫描系统安置角误差是影响定位精度的主要因素之一。首先介绍了国产中远程机载激光雷达Mars-LiDAR系统, 然后基于误差传播定律对系统误差进行了分析。研究了系统安置角误差的飞行检校方法, 采用外场定标的方法将安置角进行动态分离, 并通过飞行试验完成了系统安置角误差的动态检校, 对Mars-LiDAR系统在3000 m、4000 m飞行高度获取的点云进行了定位精度分析和校正, 验证了Mars-LiDAR系统安置角误差检校方法的实用性。
Abstract
Airborne LiDAR system is a multi-sensor integrated system, including laser scanner, global positioning system, inertial navigation system, and so on. One of the key point to obtain high positioning accuracy of laser point cloud is the airborne LiDAR calibration. And the installation angle error of laser scanner is one of the main factors which influence the measurement accuracy. Based on the working principle of airborne LiDAR system, a domestic medium range system Mars-LiDAR was developed. According to the error propagation law, the effects of measurement error and hardware installation error were analyzed. A method using different calibration field to separate installation angle errors between laser scanner and inertial navigation system was proposed. At the height of 3 000 m and 4 000 m, the high positioning accuracy was obtained, satisfying the specifications of data acquisition of airborne LiDAR. Finally the test data verified the utility, reliability and feasibility of the error calibration method by using practical engineering application.
参考文献

[1] 王建军, 刘吉东. 影响机载激光扫描点云精度的测量误差因素分析及其影响大小排序[J]. 中国激光, 2014, 41(4): 239-244.

    Wang Jianjun, Liu Jidong. Analysis and sorting of lmpacts of measurement errors on positioning accuracy of laser Point cloud obtained from airborne laser scanning[J]. Chinese Journal of Lasers, 2014, 41(4): 239-244. (in Chinese)

[2] 李国明, 咸桂玉. 简述利用ALS70机载激光雷达生产数据产品[J]. 测绘与空间地理信息, 2013, 36(12): 151-153.

    Li Guoming, Xian Guiyu. ALS70 airborne LiDAR data using the product production[J]. Geomatics & Spatial Information Technology, 2013, 36(12): 151-153. (in Chinese)

[3] 冯文江.三维激光扫描数据点位精度分析[J].地矿测绘, 2014, 30(1): 31-34.

    Feng Wenjiang. Analysis on positional accuracy of 3D laser scanning data[J]. Surveying and Mapping of Geology and Mineral Resources, 2014, 30(1): 31-34. (in Chinese)

[4] Jenkins L G. Key drivers in determining LiDAR sensor selection[C]//ISPRS Commission VⅡ Mid-term Symposium "Remote Sensing: from Pixels to Process", 2006: 342-352.

[5] 李孟麟, 朱精果, 孟柘, 等. 轻小型机载激光扫描仪设计[J]. 红外与激光工程, 2015, 44(5): 1426-1431.

    Li Menglin, Zhu Jingguo, Meng Zhe, et al. The design of lightweight and small sized airborne laser scanner[J]. Infrared and Laser Engineering, 2015, 44 (5): 1426-1431. (in Chinese)

[6] 朱精果, 李锋, 黄启泰, 等. 机载激光雷达双光楔扫描系统设计与实现[J]. 红外与激光工程, 2016, 45(5): 0502001.

    Zhu Jingguo, Li Feng, Huang Qitai, et al. Design and realization of an airborne LiDAR dual-wedge scanning system[J]. Infrared and Laser Engineering, 2016, 45(5): 0502001. (in Chinese)

[7] 田祥瑞, 徐立军, 徐腾, 等. 车载LiDAR扫描系统安置误差角检校[J]. 红外与激光工程, 2014, 43(10): 3292-3297.

    Tian Xiangrui, Xu Lijun, Xu Teng, et al. Calibration of installation angles for mobile LiDAR scanner system[J]. Infrared and Laser Engineering, 2014. 43(10): 3292-3297. (in Chinese)

[8] 李小珍, 吴玉峰, 郭亮, 等. 合成孔径激光雷达下视三维成像构型及算法[J]. 红外与激光工程, 2014, 43(10): 3276-3281.

    Li Xiaozhen, Wu Yufeng, Guo Liang, et al. Downward-looking 3-D imaging configuration and algorithm for synthetic aperture lidar[J]. Infrared and Laser Engineering,2014, 43(10): 3276-3281. (in Chinese)

[9] 何伟基, 司马博羽, 苗壮, 等. 光子计数三维成像激光雷达反转误差的校正[J]. 光学 精密工程, 2013, 21(10): 2488-2494.

    He Weiji, Sima Boyu, Miao Zhuang, er al. Correction of reversal errors in photon counting 3D imaging Lidar[J]. Optics and Precision Engineering, 2013, 2(10): 2488-2494. (in Chinese)

[10] 王丽英. 机载LiDAR数据误差处理理论与方法[M]. 武汉:测绘出版社, 2013.

    Wang Liying. Theory and Method of Error Processing of the Airborne LiDAR Data[M]. Wuhan: Surveying and Mapping Press, 2013. (in Chinese)

[11] 严洁, 阮友田, 薛珮瑶. 主被动光学图像融合技术研究[J]. 中国光学, 2015, 8(3): 378-385.

    Yan Jie, Ruan Youtian, Xue Peiyao. Active and passive optical image fusion technology[J]. Chinese Optics, 2015, 8(3): 378-385. (in Chinese)

[12] 屈恒阔, 张清源, 阮友田. 扫描成像跟踪激光雷达[J]. 中国光学, 2012, 5(3): 243-247.

    Qu Hengkuo, Zhang Qingyuan, Ruan Youtian. Laser radar based on scanning image tracking[J]. Chinese Optics, 2012, 5(3): 243-247. (in Chinese)

[13] 李小路, 徐立军. 平台运动误差对机载LiDAR激光脚点分布的影响分析[J]. 武汉大学学报, 2011, 36(11): 1270-1279.

    Li Xiaolu, Xu Lijun. Influence of laser footprint deviation causing by motion error of airborne LiDAR[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1270-1279. (in Chinese)

[14] 朱精果, 关艳玲.轻小型机载激光雷达定位精度影响因素分析[J]. 测绘科学专刊, 2013, 4(38): 30-34.

    Zhu Jingguo, Guan Yanling. Analysis of impacts of measurement errors on positioning accuracy of light Weighted mini airborne LiDAR[J]. Surveying and Mapping Science Edition, 2013, 4(38): 30-34. (in Chinese)

胡国军, 朱精果, 刘汝卿. Mars-LiDAR系统误差分析及安置角误差飞行检校[J]. 红外与激光工程, 2016, 45(12): 1217009. Hu Guojun, Zhu Jingguo, Liu Ruqing. Error analysis of Mars-LiDAR system and calibration of installation angle error[J]. Infrared and Laser Engineering, 2016, 45(12): 1217009.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!