光子学报, 2016, 45 (4): 0414001, 网络出版: 2016-05-11   

膨胀石墨制备及其1.064 μm激光消光性能

Preparation and Extinction Behaviour of Expanded Graphite to 1.064 Micrometer Laser
作者单位
1 脉冲功率激光技术国家重点实验室,电子工程学院,合肥 230037
2 安徽省红外与低温等离子体重点实验室,合肥 230037
3 北京遥感研究所,北京 100192
摘要
基于两步氧化插层先驱体法制备了不同膨胀体积的膨胀石墨,分析了先驱体、膨胀石墨的微观结构和微观形貌;利用静态测试系统测试了膨胀石墨对1.064 μm激光的消光行为,据此计算了其对1.064 μm激光的质量消光系数,得到了该系数与膨胀体积的依赖关系,并从消光机理进行了原因分析。结果表明:通过控制和优化先驱体合成条件,可以制得膨胀体积高达600 mL·g-1的膨胀石墨;两步插层导致先驱体的层间距(d002)明显大于天然石墨,当其d002从0.359 0 nm 增至0.371 1 nm时,所得膨胀石墨的膨胀体积从267 mL·g-1增至600 mL·g-1;膨胀石墨平均质量消光系数与膨胀体积呈近似线性关系,当膨胀体积由233 mL·g-1增至600 mL·g-1时,该系数从0.20 m2·g-1升至0.48 m2·g-1;膨胀石墨对1.064 μm激光呈非选择性散射,膨胀体积大,导致几何面积大,对1.064 μm激光的散射能力增强;同时,膨胀石墨中出现了更深的孔隙或孔腔,可作为等效黑体增强对入射激光的吸收.
Abstract
A series of Expanded Graphite (EG) with different Expanding Volume (EV) were prepared by the two-step chemical intercalation, and the microstructures and morphologies of the EG particles and their precursors were obtained by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and a stereoscopic microscope, respectively. The extinction behaviour of EG for 1.064 μm laser was measured by a static test, and then the average mass extinction coefficient was calculated and its dependence on EV was obtained and subsequently analyzed by the extinction theory. The results show that EG particles with different EV, especially with an EV of 600 mL·g-1, may be prepared by controlling the synthesis conditions of the precursors, namely graphite intercalation compounds. The average interlayer spacing (d002) of the precursor for EG becomes larger than that of Natural Graphite (NG) due to the two-step intercalation, and the EV of the EG whose precursor’s d002 rises from 0.3590nm up to 0.3711nm, increases from 267 mL·g-1 to 600 mL·g-1. The average mass extinction coefficient of EG depends near-linearly on its EV, and rises from 0.20 m2·g-1 up to 0.48 m2·g-1 while the EV increases from 233 mL·g-1 up to 600 mL·g-1 in the static test. The phenomenon of nonselective scattering occurs when an incident 1.064 μm laser reaches to EG particles, and then the larger is the surface area of an EG particle owing to a higher EV, the stronger is its scattering power to 1.064 μm laser. Meanwhile, much deeper pores and cavities appear with the EV increasing, and may work as equivalent black bodies to improve EG absorption of the incident laser.
参考文献

[1] CHUNG D D. Flexible graphite for gasketing, adsorption, electromagnetic interference shielding, vibration damping, electrochemical applications, and stress sensing[J]. Journal of Materials Engeering and Performance, 2000, 9(2):161-163.

[2] SONG S H, JEONG H K, KANG Y G. Preparation and characterization of expanded graphite and its styrene butadiene rubber nanocomposites[J]. Journal of Industrial and Engeering Chemistry, 2010, 16:1059-1065.

[3] ZHENG Y P, WANG H N, KANG F Y, et al. Sorption capacity of expanded graphite for oils-sorption in and among worm-like particles[J]. Carbon, 2004, 42:2603-2607.

[4] VIEIRA F, CISNEROS I, ROSA N G, et al. Influence of the natural flake graphite particle size on the textural characteristic of expanded graphite used for heavy oil sorption[J]. Carbon, 2006, 44(12):2590-2592.

[5] GRAYFER E D, NAZAROV A S, MAKOTCHENKO V G, et al. Chemic ally modified graphene sheets by functionalization of highly expanded graphite[J]. Journal of Material Chemistry, 2011, 21(10):3410-3414.

[6] GRAYFER E D, Nazarov A S, MAKOTCHENKO V G, et al. Highly expanded graphite as a precursor for graphene materials[C]. IEEE Conference Publishing, 2007, 375-376.

[7] DOU Zheng-wei, LI Xiao-xia, ZHAO Ji-jin. Research on complex refraction indices of expanded graphite[J]. Journal of China Ordnance, 2011, 7(4):243-247.

[8] ZHAO Ji-jin, LI Xiao-xia, GUO Yu-xiang, et al. Effect of expanding volume of expanded graphite on infrared screening performance[J]. Infrared and Laser Engineering, 2014, 43(2):434-437 .

[9] BA Shu-hong, JIANG Chun-hong, SUN Kang-bo, et al. Prepared and infrared extinction characteristics of micron expanded graphite[J]. Advanced Materials Research,2011, (308-310):710-714.

[10] ZHAO Ji-jin, LI Xiao-xia, GUO Yu-xiang, et al. Effect of expanding volume of expanded graphite on millimeter-wave attenuation performance[J]. Acta Photonica Sinica, 2014, 43(3):03160031.

[11] GOGOI J P, BHATTACHARYYA N S. Microwave characterization of expanded graphite/phenolic resin composite for strategic applications, extended abstracts[C]. Progress in Electromagnetics Research Symposium (Kuala Lumpur,Malaysia): Telekom Malaysia, 2012, 1880-1884.

[12] WANG Xuan-yu, PAN Gong-pei. Extinction performance of superfine graphite smoke to 10.6 μm laser emission[C]. 2nd International Symp on Adv Optical Manufac and Testing Tech: Optical Test and Measurement Tech and Equip, Proceedings of SPIE, 2006, 6150:2R-1-6.

[13] YAO Yong-ping. Study on extinction characteristics of expanded graphite smoke to1.06 and 10.6 μm laser[J]. Pyrotechnics, 2011, (1):42-45.

[14] LI Ji-hui, LIU Qian, DA Hui-fang. Preparation of sulfur-free expanded graphite at a low exfoliation temperature[J]. Materials Letters, 2007, 61:1832-1834.

[15] YU Xiu-Juan, WU Juan, ZHAO Qi, et al. Preparation and characterization of sulfur-free expanded graphite with large expanded volume[J]. Materials Letters, 2012, 73:11-13.

[16] SAIDAMINOV M I, MAKSIMOVA N V, SOROKINA N E, et al. Effect of graphite nitrate exfoliation conditions on the released gas composition and properties of expanded graphite[J]. Inorganic Materials, 2013, 49(9):883-888.

[17] ZHAO Ji-jin, LI Xiao-xia, GUO Yu-xiang, et al. Preparation and microstructure of two kinds of expanded graphite[J]. Advanced Materials Research, 2013, (706-708):211-214.

[18] ZHAO Ji-jin, LI Xiao-xia, GUO Yu-xiang, et al. Preparation and microstructure of expanded graphite with large expanding volume by two-step intercalation[J]. Advanced Materials Research, 2014, 852:101-105.

[19] ZHAO Ji-jin. Theoretical and experimental investigation of multiple-band passive screening materials[D]. Electronic Engineering nstitute, Hefei, China, 2014.

[20] MAKOTCHENKO V G, GRAYFER E D, NAZAROV A S, et al. The synthesis and properties of highly exfoliated graphites from fluorinated graphite intercalation compounds[J]. Carbon, 2011,49(10):3233-3241.

[21] HUFFMAN D R. Extinction measurements on aluminum and carbon smoke particles from far infrared to far ultraviolet[P]. AD-A179003, 1987.

[22] WEI Xing-hai, LIU Lang, ZHANG Jin-xi, et al. The preparation and morphology characteristics of exfoliated graphite derived from HClO4-graphite intercalation compounds[J]. Materials Letters, 2010, 64:1007-1009.

[23] MA De-yue,LI Xiao-xia, GUO Yu-xiang, et al. Effect of preforming pressure to precursor on the propertty of exfoliated graphite[J]. Acta Photonica Sinica, 2015, 44(3):03310031.

李晓霞, 赵纪金, 马德跃, 郭宇翔. 膨胀石墨制备及其1.064 μm激光消光性能[J]. 光子学报, 2016, 45(4): 0414001. LI Xiao-xia, ZHAO Ji-jin, MA De-yue, GUO Yu-xiang. Preparation and Extinction Behaviour of Expanded Graphite to 1.064 Micrometer Laser[J]. ACTA PHOTONICA SINICA, 2016, 45(4): 0414001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!