光学学报, 2019, 39 (3): 0323001, 网络出版: 2019-05-10   

N掺杂改善黄色磷光有机电致发光器件的效率滚降 下载: 969次

Improvement of Efficiency Roll-Off of Yellow Phosphorescent Organic Light-Emitting Devices by N-Doping
作者单位
华侨大学信息科学与工程学院, 福建 厦门 361021
摘要
制备结构为ITO/HAT-CN/TAPC/TCTA/POAPF…PO-01/Bphen/LiF/Al的黄色磷光器件,其效率滚降特性符合三重态-极化子淬灭模型;接着设计了一组单电子和单空穴器件,实验结果表明:发光层内的空穴是多子且PO-01俘获空穴,被PO-01俘获的多余空穴引起的激子淬灭是导致器件在高电流密度下效率剧烈滚降的原因;采用N掺杂的方法增加电子注入,可减少发光区内多余的空穴,改善器件载流子的平衡状况,降低多余空穴引起的激子淬灭,进而改善效率滚降。
Abstract
Yellow phosphorescent organic light-emitting device is prepared, and the structure of the device is ITO/HAT-CN/TAPC/TCTA/POAPF…PO-01/Bphen/LiF/Al. The efficiency roll-off of the device fits the triplet-polaron quenching model well. Then, electron-only and hole-only devices are designed. Experimental results show that the holes are majority carriers in light-emitting layer and PO-01 traps holes. The efficiency of the device rolls off drastically due to excitons quenching caused by PO-01 trapping excess holes at high current density. The method of N-doping is used to increase the electron injection, which reduces excess holes in the light-emitting region, improves the carriers balance of the device, and alleviates the excitons quenching caused by excess holes, thereby improving the efficiency roll-off.

1 引言

有机电致发光器件(OLED)具有轻薄、驱动电压低、可弯折、发光均匀柔和、效率高、健康护眼等优点[1-2],因此逐渐受到国内外研究人员的重视,并逐渐在固态照明和显示等应用中崭露头角,具有广阔的应用前景。OLED的发光材料有荧光材料和磷光材料2种。荧光材料只有单线态激子参与发光,最大内量子效率仅为25%,而磷光材料利用三重态激子发光,内量子效率理论上可以达到100%,具有较高的效率[3-4]。但是,磷光器件较长的激子寿命会引起高亮度下的激子淬灭,导致严重的效率滚降现象,缩短器件的工作寿命[5]。引起效率滚降的原因主要有2个:1)三重态-三重态激子淬灭(TTA),即2个三重态激子相互作用转化成1个单重态和1个基态的过程[6];2)三重态-极化子淬灭(TPQ),即三重态激子与被捕获的电荷相互作用产生1个基态和1个激发态电荷的过程[7]

改善效率滚降的方法有2种,一是拓宽激子复合区域,二是平衡载流子数量。Wu等[8]利用4,4',4″-三(咔唑-9-基)三苯胺(TCTA)和2,6-双((9H-咔唑-9-基)-3,1-亚苯基)吡啶(26DCzPPy)作为双发光层母体,制备了蓝色磷光OLED,当其亮度从100 cd/m2上升到1000 cd/m2时,效率滚降为5%,该结构拓宽了激子复合区域,有效地改善了效率滚降。Yoo等[9]以1,3-二-9-咔唑基苯(mCP)为母体,以二(4,6-二氟苯基吡啶-C2,N)吡啶甲酰合铱(FIrpic)和二(2,4-二氟苯基吡啶基)四(1-吡唑基)硼酸铱(III)(FIr6)为双客体,制备了蓝色磷光OLED,相较于以mCP为母体,以FIrpic为客体的参考器件,在30~60 mA/cm2的电流密度下,双客体器件的效率滚降减小了20%,说明以mCP为母体,以FIrpic和FIr6为客体的蓝色磷光OLED载流子数量更加平衡。目前,对发光层进行不同方式的掺杂来改善效率滚降的报道较多,而通过对电子传输层进行N掺杂来改善效率滚降的方法鲜有报道,N掺杂可以提高器件中的电子浓度,改善发光层中载流子的平衡,也能够得到更好的效率滚降。发光层掺杂一般采用双母体或者双客体掺杂等方式,工艺条件较复杂,器件重复性差,而N掺杂的方法则较简单、实用。本文将碱金属铯(Cs)掺杂在4,7-二苯基-1,10-菲罗啉(Bphen)中,将含有重金属铱(Ir)的配合物乙酰丙酮酸二(4-苯基-噻吩[3,2-c]吡啶-C2,N)合铱(III)(PO-01)掺杂在双极传输材料2,7-二( 二苯基磷酰) -9-( 4-二苯基胺)苯基-9-苯基芴(POAPF)中制备黄色磷光OLED,并着重对效率滚降问题进行研究。

2 实验

将镀有铟锡氧化物(ITO)的玻璃基片进行一系列清洗后放入烤箱中,30 min后取出,进行等离子处理(处理时间约为15 min),然后再将其放入LN-162SA型多源有机气相沉积系统中。保持真空度在5.0×10-5 Pa以下,在INFICON SQC310 型高精度膜厚控制仪的监控下, 以热蒸镀的方式,按结构依次蒸镀各有机材料。将高导电性、高透过率且具有半导体特性的ITO作为阳极[10],金属铝(Al)作为阴极,2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HAT-CN)作为空穴注入层,4,4'-环己基二[N,N-二(4-甲基苯基)苯胺](TAPC)作为空穴传输层,TCTA作为激子阻挡层,POAPF作为母体材料,PO-01作为客体,Bphen作为电子传输层,Bphen…Cs和LiF作为电子注入层。各有机材料的化学结构式如图1所示。OLED的有效发光尺寸为3 mm×3 mm,实验中的电压、电流、亮度等均采用keithley2400型程控电源及KONICA MINOLTA LS-110型亮度计组成的测试系统进行测量,所有测量都在充满氮气的手套箱中进行。

图 1. 有机材料的化学结构式。(a) HAT-CN; (b) TAPC; (c) TCTA; (d) POAPF; (e) PO-01; (f) Bphen

Fig. 1. Chemical structural formula of organic materials. (a) HAT-CN; (b) TAPC; (c) TCTA; (d) POAPF; (e) PO-01; (f) Bphen

下载图片 查看所有图片

3 实验结果及分析

实验制备的黄色磷光器件结构为器件Y:ITO/HAT-CN(5 nm)/TAPC(50 nm)/TCTA(5 nm)/POAPF…PO-01(15%, 15 nm)/Bphen(55 nm)/LiF(1 nm)/Al,其中15%为质量分数,结构图如图2(a)所示。TTA过程可表示为

TPQ过程可表示为

TTA和TPQ这2种效率滚降模型分别满足[11-12]:

ηTTAη0=J04J1+8JJ0-1,(4)ηTPQη0=11+JJe11+m,(5)

式中:3D*为三重态激子;1D*为单重态激子;1D为基态分子;kTT为三重态-三重态反应过程的速率常数;A+和A-分别为被捕获的正、负电荷;A+,*和A-,*分别为激发态的正、负电荷;kp,hkp,e为三重态-极化子反应过程的速率常数;η0为不存在淬灭时的外量子效率,即电流密度为零时的外量子效率(EQE);ηTTAηTPQ分别为效率滚降是TTA和TPQ时EQE的值;J为电流密度;J0Je分别为TTA和TPQ模型中EQE下降至η0的1/2时的电流密度,即临界电流密度;m为正整数,m=1,2,3,…。图2(b)所示为EQE-电流密度及TPQ模型曲线。由图2(b)可知,器件效率滚降特性符合TPQ模型,说明TPQ是引起该器件效率滚降的原因。

图 2. 器件的结构及其性能。(a)结构;(b)测量和拟合的EQE-电流密度

Fig. 2. Structure and performance of the device. (a) Structure; (b) measured and fitted external quantum efficiency-current density

下载图片 查看所有图片

为了研究TPQ的起因,制备了一组单电子和单空穴器件,结构分别为器件A1:ITO/Bphen(55 nm)/TCTA(5 nm)/POAPF…PO-01(15%,15 nm)/Bphen(55 nm)/LiF(1 nm)/Al,器件A2:ITO/Bphen(55 nm)/TCTA(5 nm)/POAPF (15 nm)/Bphen(55 nm)/LiF(1 nm)/Al,器件A3:ITO/HAT-CN(5 nm)/TAPC(50 nm)/TCTA(5 nm)/POAPF…PO-01(15%, 15 nm)/TAPC(55 nm)/Al,器件A4:ITO/HAT-CN(5 nm)/TAPC(50 nm)/TCTA(5 nm)/POAPF(15 nm)/TAPC(55 nm)/Al。图3(a)~(d)所示分别为器件 A1[1315]、器件A2、器件 A3[1618]和器件A4的能级图,可知:在器件A1和器件A2中,ITO/Bphen之间巨大的势垒(1.7 eV)使得空穴无法注入器件中;在器件A3和器件A4中,TAPC与Al之间巨大的势垒(2.3 eV)使得电子无法注入器件中。图3(e)所示为器件A1、A2、A3、A4的电流密度-电压曲线,可知:在相同的电压下,器件A4的电流密度明显比器件A2的电流密度大,说明器件中的空穴是多子,单电子器件A1和器件A2的电流密度几乎相等,说明PO-01不俘获电子,而掺杂PO-01的单空穴器件A3的电流密度显著小于未掺杂PO-01的器件A4的电流密度,说明PO-01俘获空穴,被PO-01俘获的多余空穴对形成激子的淬灭是导致器件在高电流密度下效率剧烈滚降的原因。

为了改善效率滚降,采用N掺杂的方法来提高器件中的电子浓度,制备器件B:ITO/HAT-CN(5 nm)/TAPC(50 nm)/TCTA(5 nm)/POAPF…PO-01(15%,15 nm)/Bphen(50 nm)/Bphen…Cs(10%, 5 nm)/Al。图4所示为器件Y和器件B的特性曲线(电流密度-电压-亮度曲线以及电流效率-亮度-功率效率曲线),可知:器件B的亮度高于器件Y,效率滚降亦优于器件Y,说明N掺杂增加了器件中电子的数量,使得多余的空穴能够与电子结合形成激子,减少了多余空穴的数量,提高了亮度,改善了效率滚降。

图 3. (a)器件A1、(b)器件A2、(c)器件A3和(d)器件A4的能级图;(e)电流密度-电压曲线

Fig. 3. Energy level diagrams of (a) device A1, (b) device A2, (c) device A3, and (d) device A4; (e) current density-voltage curves

下载图片 查看所有图片

图 4. 器件Y和器件B的特性曲线。(a)电流密度-电压-亮度曲线;(b)电流效率-亮度-功率效率曲线

Fig. 4. Characteristic curves of device Y and device B. (a) Current density-voltage-luminance curves; (b) current efficiency-luminance-power efficiency curves

下载图片 查看所有图片

表1所示为器件Y和器件B的性能参数,其中:Von为开启电压;V100V1000V10000为100,1000,10000 cd/m2亮度下的电压;ηmax为最大的效率;η100η1000为100,1000 cd/m2亮度下的效率;EQEmax为最大的外量子效率。由表1可知,器件B在100,1000,10000 cd/m2亮度下的电压都小于器件Y在相应亮度下的电压,说明N掺杂降低了电子的注入势垒,进而提高了电子的注入与传输,因此器件的工作电压降低。此外,从表1中还可以看出,器件B的临界电流密度大于器件Y的临界电流密度,说明N掺杂能够改善器件原本载流子数量不平衡的情况,从而改善效率滚降。

表 1. 器件Y和器件B的性能参数

Table 1. Performance parameters of device Y and device B

DeviceVon /VVoltage /VCurrent efficiency /(cd·A-1)Power efficiency /(lm·W-1)EQEmax /%Je /(mA·cm-2)
V100V1000V10000ηmaxη100η1000ηmaxη100η1000
Y2.132.533.084.3030.226.620.037.627.114.611.01141
B2.202.502.994.1930.927.521.339.028.916.011.39189

查看所有表

4 结论

以POAPF为母体,以PO-01为客体制备了黄色磷光OLED,其效率滚降特性符合TPQ模型,说明TPQ是引起该器件效率滚降的原因。为了研究TPQ的起因,本课题组设计了一组单电子和单空穴器件,实验结果表明:器件中的空穴是多子且PO-01俘获空穴,被PO-01俘获的多余空穴对形成激子的淬灭是导致器件在高电流密度下效率剧烈滚降的原因。为了改善效率滚降,采用N掺杂的方法增加电子注入,实验结果表明:与未进行N掺杂的器件相比,N掺杂器件在100,1000,10000 cd/m2亮度下的电压更小,临界电流密度更大。这说明,N掺杂器件的注入电子更容易,能够降低器件的电压,更重要的是减少了发光区域内多余空穴的数量,改善了器件载流子的平衡状况,从而改善了效率滚降。

参考文献

[1] 张春玉, 王庆凯, 荣华, 等. 绿色磷光微腔有机电致发光器件研究[J]. 光学学报, 2015, 35(6): 0623002.

    张春玉, 王庆凯, 荣华, 等. 绿色磷光微腔有机电致发光器件研究[J]. 光学学报, 2015, 35(6): 0623002.

    Zhang C Y, Wang Q K, Rong H, et al. Study of green phosphorescent microcavity organic light-emitting devices[J]. Acta Optica Sinica, 2015, 35(6): 0623002.

    Zhang C Y, Wang Q K, Rong H, et al. Study of green phosphorescent microcavity organic light-emitting devices[J]. Acta Optica Sinica, 2015, 35(6): 0623002.

[2] 陈雯柏, 马航, 叶继兴, 等. 量子点发光二极管的研究进展[J]. 激光与光电子学进展, 2017, 54(11): 110003.

    陈雯柏, 马航, 叶继兴, 等. 量子点发光二极管的研究进展[J]. 激光与光电子学进展, 2017, 54(11): 110003.

    Chen W B, Ma H, Ye J X, et al. Research progress on quantum dot light emitting diodes[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110003.

    Chen W B, Ma H, Ye J X, et al. Research progress on quantum dot light emitting diodes[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110003.

[3] Furukawa T, Nakanotani H, Inoue M, et al. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs[J]. Scientific Reports, 2015, 5: 8429.

    Furukawa T, Nakanotani H, Inoue M, et al. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs[J]. Scientific Reports, 2015, 5: 8429.

[4] 杨惠山. 荧光亚单层结合磷光掺杂层制备白色有机发光器件[J]. 光学学报, 2013, 33(3): 0323005.

    杨惠山. 荧光亚单层结合磷光掺杂层制备白色有机发光器件[J]. 光学学报, 2013, 33(3): 0323005.

    Yang H S. Fabrications of white organic light-emitting device based on fluorescent sub-monolayer combine with phosphorescent doping layer[J]. Acta Optica Sinica, 2013, 33(3): 0323005.

    Yang H S. Fabrications of white organic light-emitting device based on fluorescent sub-monolayer combine with phosphorescent doping layer[J]. Acta Optica Sinica, 2013, 33(3): 0323005.

[5] Xiang C Y, Fu X Y, Wei W, et al. Efficiency roll-off in blue emitting phosphorescent organic light emitting diodes with carbazole host materials[J]. Advanced Functional Materials, 2016, 26(9): 1463-1469.

    Xiang C Y, Fu X Y, Wei W, et al. Efficiency roll-off in blue emitting phosphorescent organic light emitting diodes with carbazole host materials[J]. Advanced Functional Materials, 2016, 26(9): 1463-1469.

[6] Baldo M A, Adachi C, Forrest S R. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation[J]. Physical Review B, 2000, 62(16): 10967.

    Baldo M A, Adachi C, Forrest S R. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation[J]. Physical Review B, 2000, 62(16): 10967.

[7] Reineke S, Walzer K, Leo K. Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters[J]. Physical Review B, 2007, 75(12): 125328.

    Reineke S, Walzer K, Leo K. Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters[J]. Physical Review B, 2007, 75(12): 125328.

[8] Wu Z G, Zheng Y X, Zhou L, et al. Suppression of efficiency roll-off in highly efficient blue phosphorescent organic light-emitting devices using novel iridium phosphors with good electron mobility[J]. Organic Electronics, 2017, 42: 141-145.

    Wu Z G, Zheng Y X, Zhou L, et al. Suppression of efficiency roll-off in highly efficient blue phosphorescent organic light-emitting devices using novel iridium phosphors with good electron mobility[J]. Organic Electronics, 2017, 42: 141-145.

[9] Yoo S I, Yoon J A, Kim N H, et al. Improvement of efficiency roll-off in blue phosphorescence OLED using double dopants emissive layer[J]. Journal of Luminescence, 2015, 160: 346-350.

    Yoo S I, Yoon J A, Kim N H, et al. Improvement of efficiency roll-off in blue phosphorescence OLED using double dopants emissive layer[J]. Journal of Luminescence, 2015, 160: 346-350.

[10] Kimura H. Semiconductordevice and manufacturing method of the same: US9041202[P].2015-05-26.

    Kimura H. Semiconductordevice and manufacturing method of the same: US9041202[P].2015-05-26.

[11] Yin X J, Zhang T K, Peng Q M, et al. Benzobisoxazole-based electron transporting materials with high Tg and ambipolar property: high efficiency deep-red phosphorescent OLEDs[J]. Journal of Materials Chemistry C, 2015, 3(29): 7589-7596.

    Yin X J, Zhang T K, Peng Q M, et al. Benzobisoxazole-based electron transporting materials with high Tg and ambipolar property: high efficiency deep-red phosphorescent OLEDs[J]. Journal of Materials Chemistry C, 2015, 3(29): 7589-7596.

[12] Wang J X, Chen J S, Qiao X F, et al. Simple-structured phosphorescent warm white organic light-emitting diodes with high power efficiency and low efficiency roll-off[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10093-10097.

    Wang J X, Chen J S, Qiao X F, et al. Simple-structured phosphorescent warm white organic light-emitting diodes with high power efficiency and low efficiency roll-off[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10093-10097.

[13] Wei X F, Tan W Y, Zou J H, et al. High Tg small-molecule phenanthroline derivatives as a potential universal hole-blocking layer for high power-efficiency and stable organic light-emitting diodes[J]. Journal of Materials Chemistry C, 2017, 5(9): 2329-2336.

    Wei X F, Tan W Y, Zou J H, et al. High Tg small-molecule phenanthroline derivatives as a potential universal hole-blocking layer for high power-efficiency and stable organic light-emitting diodes[J]. Journal of Materials Chemistry C, 2017, 5(9): 2329-2336.

[14] 王芳芳, 陶友田, 黄维. 高效蓝光有机电致磷光主体材料的研究进展[J]. 化学学报, 2015, 73(1): 9-22.

    王芳芳, 陶友田, 黄维. 高效蓝光有机电致磷光主体材料的研究进展[J]. 化学学报, 2015, 73(1): 9-22.

    Wang F F, Tao Y T, Huang W. Recent progress of host materials for highly efficient blue phosphorescent OLEDs[J]. Acta Chimica Sinica, 2015, 73(1): 9-22.

    Wang F F, Tao Y T, Huang W. Recent progress of host materials for highly efficient blue phosphorescent OLEDs[J]. Acta Chimica Sinica, 2015, 73(1): 9-22.

[15] Cheng Y J, Yu S Y, Lin S C, et al. A phenothiazine/dimesitylborane hybrid material as a bipolar transport host of red phosphor[J]. Journal of Materials Chemistry C, 2016, 4(40): 9499-9508.

    Cheng Y J, Yu S Y, Lin S C, et al. A phenothiazine/dimesitylborane hybrid material as a bipolar transport host of red phosphor[J]. Journal of Materials Chemistry C, 2016, 4(40): 9499-9508.

[16] Wang X, Yu J S, Zhao J, et al. Comparison of electron transporting layer in white OLED with a double emissive layer structure[J]. Displays, 2012, 33(4/5): 191-194.

    Wang X, Yu J S, Zhao J, et al. Comparison of electron transporting layer in white OLED with a double emissive layer structure[J]. Displays, 2012, 33(4/5): 191-194.

[17] Ma Y Z, Chung Y H, Zheng L L, et al. Improved hole-transporting property via HAT-CN for perovskite solar cells without lithium salts[J]. ACS Applied Materials & Interfaces, 2015, 7(12): 6406-6411.

    Ma Y Z, Chung Y H, Zheng L L, et al. Improved hole-transporting property via HAT-CN for perovskite solar cells without lithium salts[J]. ACS Applied Materials & Interfaces, 2015, 7(12): 6406-6411.

[18] Xue K W, Han G G, Duan Y, et al. Doping-free orange and white phosphorescent organic light-emitting diodes with ultra-simply structure and excellent color stability[J]. Organic Electronics, 2015, 18: 84-88.

    Xue K W, Han G G, Duan Y, et al. Doping-free orange and white phosphorescent organic light-emitting diodes with ultra-simply structure and excellent color stability[J]. Organic Electronics, 2015, 18: 84-88.

林雯嫣, 喻叶, 彭雪康, 金玉, 吴志军, 林薇. N掺杂改善黄色磷光有机电致发光器件的效率滚降[J]. 光学学报, 2019, 39(3): 0323001. Wenyan Lin, Ye Yu, Xuekang Peng, Yu Jin, Zhijun Wu, Wei Lin. Improvement of Efficiency Roll-Off of Yellow Phosphorescent Organic Light-Emitting Devices by N-Doping[J]. Acta Optica Sinica, 2019, 39(3): 0323001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!