光学学报, 2016, 36 (12): 1211001, 网络出版: 2016-12-14   

结合迭代收缩可行域的单视图多光谱生物发光断层成像

Single-View Based Multispectral Bioluminescence Tomography with Iteratively Shrinking Permissible Region
作者单位
陕西师范大学物理学与信息技术学院, 陕西 西安 710119
摘要
生物发光断层成像(BLT)是在已知生物组织的光学参数和生物体体表的光强分布的条件下, 重建荧光光源在生物体内的分布。由于近红外光在生物组织中传输过程复杂, 并且测量信息有限, BLT的光源重建问题充满挑战。为了在较少的测量下获得稳定的重建, 提出了基于单视图测量的多光谱BLT重建方法, 为了克服逆问题的不适定性, 算法设计中结合迭代收缩可行区域策略及光源稀疏性特征。为系统评估所提出方法的光源定位能力和邻近光源的分辨能力, 在匀质仿体上针对3~9 mm范围内3种尺寸的光源, 设计了4种深度上的单光源实验和3种间距下的双光源实验。仿真实验表明, 所提出方法基于单视图测量数据, 在各种光源设置下, 均可以稳定准确地重建单光源目标和辨识双光源目标。
Abstract
Bioluminescence tomography (BLT) aims to reconstruct the internal bioluminescent source distribution with known optical properties and the measurements of light intensity on the surface of biological tissues. Due to the complexity of near-infrared photons transportation in biological tissues and the limited boundary measurements, the source reconstruction of BLT is a challenging problem. To obtain stable reconstruction with a small amount of measurements, we present a single-view based reconstruction method for multispectral BLT. In this method, we combine an iteratively shrinking permissible region strategy with sparsity-inducing regularization technique to deal with the high ill-posedness of BLT inverse problem. Simulations based on homogeneous numerical phantom are designed to systematically assess the performance of the proposed method in terms of localization accuracy and the ability to resolve two neighboring targets. We investigate single spherical sources with 3 sizes at 4 different depths, and double sources with 3 source separation distances varying from 3 to 9 mm. Simulation results show that based on single view measurement the proposed reconstruction method can yield stable reconstruction with an average 0.5 mm accuracy in single source cases and resolve two neighboring sources with 3 mm separation distance.
参考文献

[1] Qin C H, Feng J C, Zhu S P, et al. Recent advances in bioluminescence tomography: Methodology and system as well as application[J]. Laser & Photonics Reviews, 2014, 8(1): 94-114.

[2] Yu J J, Zhang B, Iordachita I I, et al. Systematic study of target localization for bioluminescence tomography guided radiation therapy[J]. Medical Physics, 2016, 43(5): 2619-2629.

[3] Cong W X, Wang G, Durairaj K, et al. Practical reconstruction method for bioluminescence tomography[J]. Optics Express, 2005, 13(8): 6756-6771.

[4] Han W M, Cong W X, Wang G. Mathematical theory and numerical analysis of bioluminescence tomography[J]. Inverse Problems, 2006, 22(5): 1659-1675.

[5] Naser M A, Patterson M S. Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties[J]. Biomedical Optics Express, 2010, 1(2): 512-526.

[6] Naser M A, Patterson M S. Bioluminescence tomography using eigenvectors expansion and iterative solution for the optimized permissible source region[J]. Biomedical Optics Express, 2011, 2(11): 3179-3193.

[7] Ren S H, Hu H H, Li G, et al. Multi-atlas registration and adaptive hexahedral voxel discretization for fast bioluminescence tomography[J]. Biomedical Optics Express, 2016, 7(4): 1549-1560.

[8] Dehghani H, Davis S C, Jiang S D, et al. Spectrally resolved bioluminescence optical tomography[J]. Optics Letters, 2006, 31(3): 365-367.

[9] Feng J C, Jia K B, Qin C H, et al. Sparse Bayesian reconstruction method for multispectral bioluminescence tomography[J]. Chinese Optics Letters, 2010, 8(10): 1010-1014.

[10] Taylor S L, Mason S K, Glinton S L, et al. Accounting for filter bandwidth improves the quantitative accuracy of bioluminescence tomography[J]. Journal of Biomedical Optics, 2015, 20(9): 096001.

[11] Lu Y, Zhang X, Douraghy A, et al. Source reconstruction for spectrally-resolved bioluminescence tomography with sparse A priori information[J]. Optics Express, 2009, 17(10): 8062-8080.

[12] 金 晨, 郭红波, 侯榆青, 等. 基于变量分离近似稀疏重构和简化球谐近似的生物发光断层成像[J]. 光学学报, 2014, 34(6): 0617001.

    Jin Chen, Guo Hongbo, Hou Yuqing, et al. Bioluminescence tomography reconstruction based on simplified spherical harmonics approximation model and sparse reconstruction by separable approximation[J]. Acta Optica Sinica, 2014, 34(6): 0617001.

[13] He X W, Liang J M, Wang X R, et al. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method[J]. Optics Express, 2010, 18(24): 24825-24841.

[14] Liu K, Tian J, Qin C, et al. Tomographic bioluminescence imaging reconstruction via a dynamically sparse regularized global method in mouse models[J]. Journal of Biomedical Physics, 2011, 16(4): 046016.

[15] 刘合娟, 侯榆青, 贺小伟, 等. 几种典型迭代算法在生物发光断层成像中的对比研究及评估[J]. 激光与光电子学进展, 2015, 52(8): 081704.

    Liu Hejuan, Hou Yuqing, He Xiaowei, et al. A comparative study and evaluation on several typical iterative methods for bioluminescence tomography[J]. Laser & Optoelectronics Progress, 2015, 52(8): 081704.

[16] Yu J J, Liu F, Wu J, et al. Fast source reconstruction for bioluminescence tomography based on sparse regularization[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(10): 2583-2586.

[17] Hu Y F, Liu J, Leng C C, et al. Lp regularization for bioluminescence tomography based on the split Bregman method[J]. Molecular Imaging and Biology, 2016, 18(6): 830-837.

[18] Chen X L, Yang D F, Zhang Q T, et al. L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography[J]. Journal of Applied Physics, 2014, 115(18): 184702.

[19] 王喜昌. 光在半无限厚多层矩形生物组织中的稳态漫射方程[J]. 光学学报, 2016(3): 0317003.

    Wang Xichang. Steady-state diffusion equation of light in semi-infinite multilayer rectangular biological tissues[J]. Acta Optica Sinica, 2016, 36(3): 0317003.

[20] Alexandrakis G, Rannou F R, Chatziioannou A F. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: A computer simulation feasibility study[J]. Physics in Medicine and Biology, 2005, 50(17): 4225-4241.

余景景, 王海玉, 李启越. 结合迭代收缩可行域的单视图多光谱生物发光断层成像[J]. 光学学报, 2016, 36(12): 1211001. Yu Jingjing, Wang Haiyu, Li Qiyue. Single-View Based Multispectral Bioluminescence Tomography with Iteratively Shrinking Permissible Region[J]. Acta Optica Sinica, 2016, 36(12): 1211001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!