发光学报, 2013, 34 (10): 1373, 网络出版: 2013-10-24  

溶剂极性对β胡萝卜素分子电子-声子耦合的影响

Effect of Solvent Polarity on The Electron-phonon Coupling Constants of β-carotene
作者单位
1 吉林大学 超硬材料国家重点实验室, 吉林 长春130012
2 吉林大学 物理学院, 吉林 长春130012
摘要
引用一种带有量纲的电子-声子相互作用常数, 很容易建立它与黄昆因子的关系式, 进而计算出类胡萝卜素分子每个碳碳振动模的电子-声子耦合常数。测量了β胡萝卜素分子在极性溶剂1, 2-二氯乙烷和非极性溶剂环己烷中20~60 ℃的温度范围内紫外-可见吸收光谱和共振拉曼光谱。结果表明, 在极性溶剂1, 2-二氯乙烷中,β胡萝卜素分子的碳碳键拉曼散射截面小,黄昆因子、电子-声子耦合数比非极性溶剂中大。为了解释这种现象, 我们引入线性多烯分子的两种模型, 即F A C Oliveria引入的有效共轭长度模型和D Yu Paraschuk提出的相干弱阻尼电子-晶格振动模型。
Abstract
The relation between electron-phonon coupling constants with dimension and Huang-Ryes factor is easily established as we reference the electron-phonon coupling constants. Then we work out every C-C bond vibration mode of electron-phonon coupling constants of carotenoid. The UV-Vis absorption and Raman spectra of β-carotene in polar 1,2-dicholoroethane and nonpolar cyclohexane were characterized at the temperature range from 20~60 ℃.The results showed that the Raman scattering cross-section for C—C bond of β-carotene in polar solvent 1,2-dicholoroethane is small, Huang-Ryes factor and electron-phonon coupling constants are larger than those in nonpolar solvent. The experiment phenomena were explained by Onsager solvent effects theory, effective conjugated length and coherent weakly damped electron-lattice vibration.
参考文献

[1] Qian P, Saiki K, Mizoguchi T, et al. Time-dependent changes in the carotenoid composition and preferential binding of spirilloxanthin to the reaction center and anhydrorhodovibrin to the LH1 antenna complex in rhodobium marinum [J]. Photochem. Photobio., 2001, 74(3):444-452.

[2] Luer L, Manzoni C, Cerullo G, et al. Intra-chain exciton generation by charge recombination in substituted polyacetylenes [J]. Chem. Phys. Lett., 2007, 444(1-3):61-65.

[3] Zhao X H, Ma F, Wu Y S, et al. Ultrafast internal conversion and vibrational relaxation in singlet excited-state all-trans-β-carotene as revealed by femtosecond time-resolved stimulated Raman spectroscopy [J]. Acta Phys. Sinica (物理学报), 2008, 57(3):298-306 (in Chinese).

[4] Johansson E M J, Edvinsson T, Odelius M, et al. Electronic and molecular surface structure of a polyene-diphenylaniline dye adsorbed from solution onto nanoporous TiO2 [J]. J. Phys. Chem. C, 2007, 111(24):8580-8586.

[5] Widjaja E, Garland M. Detection of bio-constituents in complex biological tissue using Raman microscopy. Application to human nail clippings [J]. Talanta, 2010, 80(5):1665-1671.

[6] Oliveira V E, Castro H V, Edwards H G M, et al. Carotenes and carotenoids in natural biological samples: A Raman spectroscopic analysis [J]. J. Raman Spectrosc., 2010, 41(6):642-650.

[7] Niedzwiedzki D M, Enriquez M M, LaFountain A M, et al. Ultrafast time-resolved absorption spectroscopy of geometric isomers of xanthophylls [J]. Chem. Phys., 2010, 373(1-2):80-89.

[8] Shimada R, Hamaguchi H O. Solute-solvent intermolecular vibronic coupling as manifested by the molecular near-field effect in resonance hyper-Raman scattering [J]. J. Chem. Phys., 2011, 134(3):034516-1-10.

[9] Li Z L, Ou Yang S L, Cao B, et al. Effect of solvent refractive index on Raman cross-section of β-carotene [J]. Acta Phys. Sinica (物理学报), 2009, 58(10):6908-6912 (in Chinese).

[10] Qu G N, Li D F, Li Z L, et al. The influence of solvent density to Raman scattering cross-section of β-carotene[J]. Acta Phys. Sinica (物理学报), 2010, 59(5):3168-3172 (in Chinese).

[11] He Z F, Gosztola D, Deng Y, et al. Effect of terminal groups, polyene chain length, and solvent on the first excited singlet states of carotenoids [J]. J. Phys. Chem. B, 2000, 104(28):6668-6673.

[12] Applequist J. Theory of solvent effects on the visible absorption spectrum of .beta.-carotene by a lattice-filled cavity model [J]. J. Phys. Chem., 1991, 95(9):3539-3545.

[13] Lee J Y, Mhin J B, Kim K S. Roles of central and terminal carbon atoms in infrared and Raman intensities of polyenes:Analysis of atomic polar and polarizability tensors [J]. J. Phys. Chem., 1997, 107(13):4881-4887.

[14] Liu W L, Wang D M, Zheng Z R, et al. Solvent effects on the S0 →S2 absorption spectra of β-carotene [J]. J. Chin. Phys. B, 2010, 19(1):013102-1-5.

[15] Kakimoto M, Fujiyama T. Solvent effects on the absolute intensities of infrared absorption bands and the dipole-dipole interaction [J]. Bull. Chem. Soc. Jpn., 1975, 48(8):2258-2263.

[16] Tian Y J, Zuo J, Zhang L Y, et al. Study of resonance Raman cross section of aqueous β-carotene at low concentrations [J]. Appl. Phys. B, 2007, 87(4):727-730.

[17] Rumi M, Zerbi G, Myllen K. Nonlinear optical and vibrational properties of conjugated polyaromatic molecules [J]. J. Chem. Phys., 1997, 106(1):24-35.

[18] Paraschuk D Y, Kobbryanskii V M. Coherent electron-lattice vibrations in trans-nanopolyacetylene probed by Raman scattering [J]. Phys. Rev. Lett., 2001, 87(20):207402-1-4.

[19] Gierschner J, Mack H G, Lüer L, et al. Fluorescence and absorption spectra of oligophenylenevinylenes: Vibronic coupling, band shapes, and solvatochromism [J]. J. Chem. Phys., 2002, 116(19):8596-8610.

[20] Renge I, Van Grondelle V, Dekker J P. Matrix and temperature effects on absorption spectra of β-carotene and pheophytina in solution and in green plant photosystem Ⅱ[J]. J. Photochem. Photobiol. A, 1996, 96:109-122.

[21] Paraschuk D Y, Arnautov S A, Shchegolikhin A N, et al. Temperature evolution of electronic and lattice configurations in highly ordered trans-polyacetylene [J]. JETP, 1996, 64(9):658-663.

[22] Peeters E, Ramos A M, Meskors S C J, et al. Singlet and triplet excitations of chiral dialkoxy-p-phenylene vinylene oligomers [J]. J. Chem. Phys., 2000, 112(21):9445-9455.

[23] Hagler T W, Pakbaz K, Voss K F, et al. Enhanced order and electronic delocalization in conjugated polymers oriented by gel processing in polyethylene [J]. Phys. Rev. B, 1991, 44(16):8652-8666.

[24] Biswas N, Umapathy S. Simple approach to determining absolute Raman cross sections using an optical parametric oscillator [J]. Appl. Spectrosc., 1998, 52(4):496-499.

[25] Dudik J M, Johndon C R, Asher S A. Wavelength dependence of the preresonance Raman cross sections of CH3CN, SO2-4, ClO4-, and NO3- [J]. J. Chem. Phys., 1985, 82(4):1732-1741.

[26] Paraschuk D Y, Arnautov S A, Shchegolikhin A N, et al. Temperature evolution of electronic and lattice configurations in highly ordered trans-polyacetylene [J]. JETP, 1996, 64(9):658-663.

[27] Tubio R, Dordinville R, Lam W, et al. Optical properties and photoexcitation of a novel liquid form of soluble polyacetylene [J]. Phys. Rev. B, 1984, 30(11):6601-6605.

[28] Borges C A M, Marletta A, Faria R M, et al. Vibrational structure of organic semiconductors: The role of conjugation length [J]. Braz. J. Phys., 2004, 34(213):590-592.

[29] Paraschuk D Y, Kobryanskii V M. Coherent electron-lattice vibrations in trans-nanopolyacetylene probed by Raman scattering [J]. Phys. Rev. Lett., 2001, 87(20):207402-1-5.

[30] Wu Y L, Liu T Y, Sun C L, et al. Effect of molecule polarity on the resonance raman spectrum of caroteniod [J]. Acta Phys. Sinica (物理学报), 2013, 62(3):037801-1-6 (in Chinese).

徐胜楠, 孙美娇, 孙尚, 刘天元, 朱坤博, 孙成林, 里佐威. 溶剂极性对β胡萝卜素分子电子-声子耦合的影响[J]. 发光学报, 2013, 34(10): 1373. XU Sheng-nan, SUN Mei-jiao, SUN Shang, LIU Tian-yuan, ZHU Kun-bo, SUN Cheng-lin, LI Zuo-wei. Effect of Solvent Polarity on The Electron-phonon Coupling Constants of β-carotene[J]. Chinese Journal of Luminescence, 2013, 34(10): 1373.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!