作者单位
摘要
1 吉林大学物理学院, 吉林 长春 130012
2 吉林大学分子酶学工程教育部重点实验室, 吉林 长春 130012
线性多烯分子具有高强度且信息丰富的共振拉曼光谱, 在生物学、 光电材料和医学等方面都有一定应用。 而含有共轭双键的短链β胡萝卜素分子是多烯分子中极具有代表性的分子。 在激发光作用下π电子与CC键振动相互作用影响着吸收光谱和拉曼光谱, 而共振拉曼效应和电子-声子耦合影响着共振拉曼光谱的强度、 频率和线型。 测量了β胡罗卜素分子在二氯乙烷中283~223 K温度范围内的紫外-可见吸收和共振拉曼光谱。 研究了共振效应和电子-声子耦合对吸收光谱和拉曼光谱的变化所起的作用。 获得随着温度的降低, 黄昆因子减小, 表明CC键的振动减弱, 分子体系能量减小, 吸收峰红移; 随着温度的降低, 分子有序性提高, 电子-声子耦合强度增加, 增强了电子能隙对CC键振动的调制作用, 拉曼模频率向低波数方向移动, 即拉曼光谱红移; 同时, 经过计算发现随着温度的降低, β胡萝卜素分子C—C和C=C的拉曼散射截面增加, 线宽变窄, 倍频与基频强度比增加。 对比和分析了共振效应和电子-声子耦合作用对拉曼光谱的拉曼散射截面、 线宽和倍频与基频强度比的影响。 虽然共振效应和电子-声子耦合作用在不同温度下对拉曼光谱都有一定影响, 但研究发现不同温度下共振效应对拉曼光谱的影响要大于电子-声子耦合, 且电子-声子耦合对谐波的影响更小。 这是由于随着温度的降低, 发生红移的紫外可见吸收光谱, 使拉曼光谱中514.5 nm激发光更接近00吸收峰, 明显的增强了分子的共振效应, 使其拉曼散射截面, 线宽, 倍频与基频强度比随温度有很大变化。 该研究对共振效应和电子-声子耦合的研究为研究温度对胡萝卜素等线性多烯分子性质的影响提供一定实验和理论依据。
线性多烯分子 共振拉曼光谱 黄昆因子 电子-声子耦合 Linear polymers Resonance Raman spectra Huang-Rhys Electron-phonon coupling 
光谱学与光谱分析
2022, 42(2): 454
作者单位
摘要
1 吉林大学超硬材料国家重点实验室, 吉林 长春130012
2 吉林大学物理学院, 吉林 长春130012
电子-声子耦合常数不仅可以反映出分子中π电子离域程度的强弱, 有效共轭长度的大小, 同时也可以表征分子中的原子和电子在外界环境作用下的相互振动耦合程度的强弱。 在一些研究中电子-声子耦合常数被定义为无量纲的系数。 应用R.Tubino等引用的一种有量纲的电子-声子耦合常数, 建立其与黄昆因子的关系式, 进而可以计算出共轭键中单个振动模的数值。 压强对多烯分子吸收光谱、 拉曼光谱频移影响的研究已有报道, 但对拉曼散射截面、 黄昆因子、 电子-声子耦合常数的研究还没有报道。 测量了β胡萝卜素分子在二硫化碳溶液中0.04~0.60 GPa的压强范围内的紫外-可见吸收光谱和共振拉曼光谱。 实验结果表明, 随着压强的增加, CS2溶液中的β胡萝卜素分子的紫外-可见吸收光谱的吸收带发生明显的红移现象, 而拉曼光谱的特征谱线却发生蓝移的现象, 拉曼散射截面减小, 电子-声子耦合常数增加。 其机理是随着压强的增加, β胡萝卜素分子被压缩又结构有序性下降, 导致电子能隙变窄, 有效共轭长度变短, π电子离域范围减小, 拉曼散射截面减小, 黄昆因子、 电子-声子耦合常数增加。
β胡萝卜素 黄昆因子 电子-声子耦合常数 All-trans-βcarotene Huang-Rhys factor Electron-phonon coupling constants 
光谱学与光谱分析
2014, 34(5): 1302
作者单位
摘要
1 吉林大学 超硬材料国家重点实验室, 吉林 长春130012
2 吉林大学 物理学院, 吉林 长春130012
引用一种带有量纲的电子-声子相互作用常数, 很容易建立它与黄昆因子的关系式, 进而计算出类胡萝卜素分子每个碳碳振动模的电子-声子耦合常数。测量了β胡萝卜素分子在极性溶剂1, 2-二氯乙烷和非极性溶剂环己烷中20~60 ℃的温度范围内紫外-可见吸收光谱和共振拉曼光谱。结果表明, 在极性溶剂1, 2-二氯乙烷中,β胡萝卜素分子的碳碳键拉曼散射截面小,黄昆因子、电子-声子耦合数比非极性溶剂中大。为了解释这种现象, 我们引入线性多烯分子的两种模型, 即F A C Oliveria引入的有效共轭长度模型和D Yu Paraschuk提出的相干弱阻尼电子-晶格振动模型。
黄昆因子 电子-声子耦合系数 线性多烯 Huang-Ryes factor electron-phonon coupling constant linear polyenes 
发光学报
2013, 34(10): 1373

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!